• 并发编程


    JDK 1.8中,CHM采用Node数组 + 链表/红黑树(避免hash冲突)

    • 细化锁 - 1.8中,只对数组元素进行加锁,进一步避免冲突(1.7中为分段锁的设计)
    • 纳入红黑树的实现,当链表长度>=8(且Map.size>=64)时,会将链表转换为红黑树(查询效率 log(n))

    put

    • tip 1 : CHM中数组元素只在使用时才进行初始化
    • tip 2 : 对于为空的单元格,采用cas直接设值(无需锁定)
    • tip 3 : 发生线程冲突时,sync锁住单元格中数据结构的头节点,(根据Node节点类型进行链表/树操作)
    • tip 4 : CHM中的扩容,采用了分组的思想,通过标志位的控制,允许多个线程并发参与transfer
    • tip 5 : CHM中的size记录,也采用了分组的思想,baseCount + sum(CounterCell[]),避免对单一属性修改的并发问题
        public V put(K key, V value) {
            return putVal(key, value, false);
        }
    
        /** Implementation for put and putIfAbsent */
        final V putVal(K key, V value, boolean onlyIfAbsent) {
            if (key == null || value == null) throw new NullPointerException();
            // MAP 1 : 计算hash值,高低位相与,增强散列度(低位 ^ 高位>>>16) & 0x7fffffff 保证结果一定为正数
            int hash = spread(key.hashCode());
            int binCount = 0;   // 记录链表长度,用于链表与树的转换
            for (Node<K,V>[] tab = table;;) {   // 自旋
                Node<K,V> f; int n, i, fh;
                // MAP 2 - tip :初始化tab数组
                if (tab == null || (n = tab.length) == 0)
                    tab = initTable();
                // tip :如果对应下标内容为空,cas插入值 -- (n-1)&hash,index取决于hash的后log(n)位
                else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                    if (casTabAt(tab, i, null,
                                 new Node<K,V>(hash, key, value, null)))
                        break;                   // no lock when adding to empty bin
                }
                // MAP 3 :线程辅助扩容 fh,节点标志位,用于区分节点当前类型(-1 - 扩容中,>0 链表,-2 树...)
                else if ((fh = f.hash) == MOVED)
                    tab = helpTransfer(tab, f);
                else {
                    // MAP 4 :插入,但存在hash冲突,需加锁保证线程安全(只锁Node节点),并记录链表长度binCount,大于8时触发树转
                    V oldVal = null;
                    synchronized (f) {
                        if (tabAt(tab, i) == f) {
                            // tip : 链表结构插入 - 通过f.hash的值表示当前节点的状态,-1 扩容 -2 树 正数 普通链表节点
                            if (fh >= 0) {
                                binCount = 1;
                                // 查找是否存在相等的值,是则替换
                                for (Node<K,V> e = f;; ++binCount) {
                                    K ek;
                                    // key相等,覆盖
                                    if (e.hash == hash &&
                                        ((ek = e.key) == key ||
                                         (ek != null && key.equals(ek)))) {
                                        oldVal = e.val;
                                        if (!onlyIfAbsent)
                                            e.val = value;
                                        break;
                                    }
                                    Node<K,V> pred = e;
                                    // key均不相等,新建节点,并置于链表末端
                                    if ((e = e.next) == null) {
                                        pred.next = new Node<K,V>(hash, key,
                                                                  value, null);
                                        break;
                                    }
                                }
                            }
                            // tip :树结构插入
                            else if (f instanceof TreeBin) {
                                Node<K,V> p;
                                binCount = 2;
                                // 如果已存在则替换值,否则插入
                                if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                               value)) != null) {
                                    oldVal = p.val;
                                    if (!onlyIfAbsent)
                                        p.val = value;
                                }
                            }
                        }
                    }
                    // MAP 5 :链表转红黑树
                    if (binCount != 0) {
                        if (binCount >= TREEIFY_THRESHOLD)
                            treeifyBin(tab, i);
                        if (oldVal != null)
                            return oldVal;
                        break;
                    }
                }
            }
            // MAP : 计数值加一(分段式增加) - 可能触发扩容操作
            addCount(1L, binCount);
            return null;
        }
    

    initTable

    通过CAS + 占位符完成并发控制

        // 初始化Table,标志位 sizeCtl:-1 正在初始化 -N 存在多个线程参与扩容 正数 下一次扩容阈值
        private final Node<K,V>[] initTable() {
            Node<K,V>[] tab; int sc;
            // 当table为空,未被初始化时进入初始化逻辑
            while ((tab = table) == null || tab.length == 0) {
                if ((sc = sizeCtl) < 0)
                    Thread.yield(); // 其他线程获取了sizeCtl标志,则当前线程释放cpu时间片
    
                // MAP :采用sizeCtl标志位进行初始化并发控制,采用CAS实现线程安全 -- 初始化完成后,设置扩容阈值sizeCtl(75%)
                else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {  // 线程CAS抢占初始化资格
                    try {
                        if ((tab = table) == null || tab.length == 0) {
                            int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                            @SuppressWarnings("unchecked")
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                            table = tab = nt;
                            sc = n - (n >>> 2);
                        }
                    } finally {
                        sizeCtl = sc;
                    }
                    break;
                }
            }
            return tab;
        }
    

    addCount

    如果对baseCount的修改发生并发争抢,则随机获取CounterCells数组中的某个元素,并修改元素中的值(分组思想)

        // baseCount - 基础计数值
        // CounterCell - 分段计数组
        // size = baseCount + CounterCell.sum();
        private final void addCount(long x, int check) {
            CounterCell[] as; long b, s;
    
            // tip 1: 如果直接修改baseCount成功,则不进入if代码块
            // 否则,随机增加CounterCell中某一个Cell的值
            if ((as = counterCells) != null ||
                !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
                // tip 2:修改baseCount失败,进入修改CounterCell逻辑
                CounterCell a; long v; int m;
                boolean uncontended = true;
                // tip 2:获取随机数,CAS修改对应下标位的值,如果成功,则不进入代码块
                // 否则,fullAddCount
                if (as == null || (m = as.length - 1) < 0 ||
                    (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                    !(uncontended =
                      U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                    // tip 3:如果①数组未初始化,②对应位置的对象未创建,③对应位置存在并发冲突,则
                    fullAddCount(x, uncontended);
                    return;
                }
                if (check <= 1)
                    return;
                s = sumCount();
            }
    
            if (check >= 0) {
                Node<K,V>[] tab, nt; int n, sc;
                // size 大于 扩容阈值
                while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                       (n = tab.length) < MAXIMUM_CAPACITY) {
                    int rs = resizeStamp(n);
                    // sc < 0,表示当前已有线程处于扩容,尝试辅助扩容
                    if (sc < 0) {
                        // 无需参与扩容
                        if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                            transferIndex <= 0)
                            break;
                        // 协助扩容(参与扩容,执行扩容线程加一)
                        if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                            transfer(tab, nt);
                    }
                    // 第一次扩容(sc,高位为扩容标记,低位为参与扩容的线程数量)
                    else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                                 (rs << RESIZE_STAMP_SHIFT) + 2))
                        transfer(tab, null);
                    s = sumCount();
                }
            }
        }
    
        private final void fullAddCount(long x, boolean wasUncontended) {
            int h;
            if ((h = ThreadLocalRandom.getProbe()) == 0) {
                ThreadLocalRandom.localInit();      // force initialization
                h = ThreadLocalRandom.getProbe();
                wasUncontended = true;
            }
            boolean collide = false;                // True if last slot nonempty
            for (;;) {
                CounterCell[] as; CounterCell a; int n; long v;
                // 已初始化
                if ((as = counterCells) != null && (n = as.length) > 0) {
                    // 数组中对应下标位置未赋值
                    if ((a = as[(n - 1) & h]) == null) {
                        // 构建CounterCell对象,并赋值
                        if (cellsBusy == 0) {            // Try to attach new Cell
                            CounterCell r = new CounterCell(x); // Optimistic create
                            if (cellsBusy == 0 &&
                                U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {   // 抢占CounterCell对象构建资格
                                boolean created = false;
                                try {               // Recheck under lock
                                    CounterCell[] rs; int m, j;
                                    if ((rs = counterCells) != null &&
                                        (m = rs.length) > 0 &&
                                        rs[j = (m - 1) & h] == null) {
                                        rs[j] = r;
                                        created = true;
                                    }
                                } finally {
                                    cellsBusy = 0;
                                }
                                if (created)
                                    break;
                                continue;           // Slot is now non-empty
                            }
                        }
                        collide = false;
                    }
                    else if (!wasUncontended)       // CAS already known to fail
                        wasUncontended = true;      // Continue after rehash
                    else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))    // cas尝试设置值
                        break;
                    else if (counterCells != as || n >= NCPU)   // 数组长度大于cpu核心数时,不再扩容
                        collide = false;
                    else if (!collide)
                        collide = true;
                    // 更新counterCells中元素失败,最终触发counterCells扩容操作
                    else if (cellsBusy == 0 &&
                             U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                        try {
                            if (counterCells == as) {// Expand table unless stale
                                CounterCell[] rs = new CounterCell[n << 1];
                                for (int i = 0; i < n; ++i)
                                    rs[i] = as[i];
                                counterCells = rs;
                            }
                        } finally {
                            cellsBusy = 0;
                        }
                        collide = false;
                        continue;                   // Retry with expanded table
                    }
                    // 当发生线程争用后,改变ThreadLocalRandom的probe
                    h = ThreadLocalRandom.advanceProbe(h);
                }
    
                // 未初始化 - cellsBusy 扩容占位符,初始化后数组长度为2,同时完成size add操作
                else if (cellsBusy == 0 && counterCells == as &&
                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                    boolean init = false;
                    try {                           // Initialize table
                        if (counterCells == as) {
                            CounterCell[] rs = new CounterCell[2];
                            rs[h & 1] = new CounterCell(x);
                            counterCells = rs;
                            init = true;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    if (init)
                        break;
                }
                // 再次尝试 BASECOUNT (优化 - 多次尝试)
                else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
                    break;                          // Fall back on using base
            }
        }
    

    transfer

    扩容,分组扩容,根据cpu和size大小,计算出每一参与线程负责的node数量与范围
    高低位指针,CHM中node数组的大小一定为2的幂,扩容时,node节点的数据只会分流到i或n+i,只需判断对应位置的bit值即可实现分流

        private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
            int n = tab.length, stride;
            // tip : 通过cpu核心数计算出单个线程处理的node数
            if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
                stride = MIN_TRANSFER_STRIDE; // subdivide range
            // nextTab未初始化,则新建一个nextTab,(容量乘2)
            if (nextTab == null) {
                try {
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                    nextTab = nt;
                } catch (Throwable ex) {      // try to cope with OOME
                    sizeCtl = Integer.MAX_VALUE;
                    return;
                }
                nextTable = nextTab;
                transferIndex = n;          // 需要转移的节点个数
            }
            int nextn = nextTab.length;
    
            // 创建一个fwd节点(Hash = -1 MOVED),用于将当前节点的操作引向nextTab
            ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
            boolean advance = true;     // 用于控制循环
            boolean finishing = false;  // 用于判断扩容是否完成
            for (int i = 0, bound = 0;;) {
                Node<K,V> f; int fh;
    
                // 自旋尝试为当前线程分配transfer任务(获取下标值,边界值和修改TRANSFERINDEX的值) - 处理区间为(nextBound,nextIndex)
                while (advance) {
                    int nextIndex, nextBound;
                    if (--i >= bound || finishing)      // 此处发生了i值的修改,将会导致跳出while循环
                        advance = false;
                    else if ((nextIndex = transferIndex) <= 0) {
                        i = -1;
                        advance = false;
                    }
                    else if (U.compareAndSwapInt
                             (this, TRANSFERINDEX, nextIndex,
                              nextBound = (nextIndex > stride ?
                                           nextIndex - stride : 0))) {
                        bound = nextBound;
                        i = nextIndex - 1;
                        advance = false;
                    }
                }
    
                if (i < 0 || i >= n || i + n >= nextn) {
                    int sc;
                    if (finishing) {            // 如果完成了扩容,更新字段,重新设置扩容阈值
                        nextTable = null;
                        table = nextTab;
                        sizeCtl = (n << 1) - (n >>> 1);
                        return;
                    }
                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {   // 当前线程的任务已经执行完毕,需修改SIZECTL,更新参与线程数量
                        if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                            return;
                        finishing = advance = true;                                           // 扩容完成
                        i = n; // recheck before commit
                    }
                }
                else if ((f = tabAt(tab, i)) == null)                                         // 对于空位置的处理,直接插入FWD
                    advance = casTabAt(tab, i, null, fwd);
                else if ((fh = f.hash) == MOVED)                                              // MOVED,已经完成了迁移的节点
                    advance = true; // already processed
                else {
                    synchronized (f) {                                                        // 加锁,迁移。
                        if (tabAt(tab, i) == f) {
                            Node<K,V> ln, hn;                                                 // 高低位指针
                            if (fh >= 0) {
                                int runBit = fh & n;
                                Node<K,V> lastRun = f;
                                for (Node<K,V> p = f.next; p != null; p = p.next) {
                                    // 用于复用尾部高低位相同的节点(记录,尾部比特位的值,以及等于该比特位值的最前的节点)
                                    int b = p.hash & n;
                                    if (b != runBit) {
                                        runBit = b;
                                        lastRun = p;
                                    }
                                }
                                if (runBit == 0) {
                                    ln = lastRun;
                                    hn = null;
                                }
                                else {
                                    hn = lastRun;
                                    ln = null;
                                }
                                for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                    int ph = p.hash; K pk = p.key; V pv = p.val;
                                    if ((ph & n) == 0)
                                        ln = new Node<K,V>(ph, pk, pv, ln);
                                    else
                                        hn = new Node<K,V>(ph, pk, pv, hn);
                                }
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                            else if (f instanceof TreeBin) {
                                TreeBin<K,V> t = (TreeBin<K,V>)f;
                                TreeNode<K,V> lo = null, loTail = null;
                                TreeNode<K,V> hi = null, hiTail = null;
                                int lc = 0, hc = 0;
                                for (Node<K,V> e = t.first; e != null; e = e.next) {
                                    int h = e.hash;
                                    TreeNode<K,V> p = new TreeNode<K,V>
                                        (h, e.key, e.val, null, null);
                                    if ((h & n) == 0) {
                                        if ((p.prev = loTail) == null)
                                            lo = p;
                                        else
                                            loTail.next = p;
                                        loTail = p;
                                        ++lc;
                                    }
                                    else {
                                        if ((p.prev = hiTail) == null)
                                            hi = p;
                                        else
                                            hiTail.next = p;
                                        hiTail = p;
                                        ++hc;
                                    }
                                }
                                ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin<K,V>(lo) : t;
                                hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin<K,V>(hi) : t;
                                setTabAt(nextTab, i, ln);
                                setTabAt(nextTab, i + n, hn);
                                setTabAt(tab, i, fwd);
                                advance = true;
                            }
                        }
                    }
                }
            }
        }
    
        // 线程通过cas申请到transfer任务,参与扩容即可
        final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
            Node<K,V>[] nextTab; int sc;
            if (tab != null && (f instanceof ForwardingNode) &&
                (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
                int rs = resizeStamp(tab.length);
                while (nextTab == nextTable && table == tab &&
                       (sc = sizeCtl) < 0) {
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || transferIndex <= 0)
                        break;
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                        transfer(tab, nextTab);
                        break;
                    }
                }
                return nextTab;
            }
            return table;
        }
    

    treeifyBin

    将链表转为红黑树,只要当链表size>=8且map.size>=64时才触发转换,否则触发扩容
    CHM中使用了TreeBin对象处理红黑树的操作细节,实现对TreeNode的管理。

        private final void treeifyBin(Node<K,V>[] tab, int index) {
            Node<K,V> b; int n, sc;
            if (tab != null) {
                // 数组长度小于64,则进行扩容
                if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                    tryPresize(n << 1);
                // 否则,链表转红黑树
                else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                    synchronized (b) {
                        if (tabAt(tab, index) == b) {
                            TreeNode<K,V> hd = null, tl = null;
                            for (Node<K,V> e = b; e != null; e = e.next) {
                                TreeNode<K,V> p =
                                    new TreeNode<K,V>(e.hash, e.key, e.val,
                                                      null, null);
                                if ((p.prev = tl) == null)
                                    hd = p;
                                else
                                    tl.next = p;
                                tl = p;
                            }
                            // 使用TreeBin容器对象组织TreeNode构建红黑树
                            setTabAt(tab, index, new TreeBin<K,V>(hd));
                        }
                    }
                }
            }
        }
    

    get

    get获取元素:
    ①为普通节点(链表),则遍历判断获取
    ②e.hash<0,则可能为TreeBin或FWD,调用e.find()方法
    对于FWD对象,会进入NextTable中查找对应元素的值(扩容不影响get操作)

        public V get(Object key) {
            //tab:当前散列表
            //e:当前元素
            //p:目标节点
            //n:table数组长度
            //eh:e的hash值
            //ek:当前元素的key
            Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
            //高十六位参与运算
            int h = spread(key.hashCode());
            //条件一:true:table不为空
            //条件二:key对应的hash值对应在数组的下标位置为空
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (e = tabAt(tab, (n - 1) & h)) != null) {
                //CASE1:当前桶位的头节点hash值与查找结点hash值一致
                if ((eh = e.hash) == h) {
                    //hash值一致,判断key是否一致,一致的话就返回对应数据
                    if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                        return e.val;
                }
                //CASE2:-1代表当前元素已经被迁移走了
                //		-2代表当前元素TreeBin节点,使用find方法进行查询
                else if (eh < 0)
                    return (p = e.find(h, key)) != null ? p.val : null;
    
                //当前桶位是链表节点,迭代查询
                while ((e = e.next) != null) {
                    if (e.hash == h &&
                            ((ek = e.key) == key || (ek != null && key.equals(ek))))
                        return e.val;
                }
            }
            return null;
        }
    
            // FWD中的find()方法,将会指引到新的table中进行查询
        static final class ForwardingNode<K,V> extends Node<K,V> {
            final Node<K,V>[] nextTable;
            ForwardingNode(Node<K,V>[] tab) {
                super(MOVED, null, null, null);
                this.nextTable = tab;
            }
    
            Node<K,V> find(int h, Object k) {
                // loop to avoid arbitrarily deep recursion on forwarding nodes
                outer: for (Node<K,V>[] tab = nextTable;;) {
                    //e:表示在扩容创建的新表使用寻址算法得到的桶位头接待你
                    //n:表示新表的长度
                    Node<K,V> e; int n;
                    //新扩容表中重新定位的的头节点为空
                    if (k == null || tab == null || (n = tab.length) == 0 ||
                            (e = tabAt(tab, (n - 1) & h)) == null)
                        return null;
                    //自旋
                    for (;;) {
                        //eh:新扩容表指定桶位节点的hash值
                        //ek:新扩容表指定桶位节点的key值
                        int eh; K ek;
                        // 条件成立,表示当前元素是查找的元素,返回即可
                        if ((eh = e.hash) == h &&
                                ((ek = e.key) == k || (ek != null && k.equals(ek))))
                            return e;
                        //eh < 0   1.treeBin  2.FWD节点
                        if (eh < 0) {
                            if (e instanceof ForwardingNode) {
                                tab = ((ForwardingNode<K,V>)e).nextTable;
                                continue outer;
                            }
                            //treeBin的find
                            else
                                return e.find(h, k);
                        }
                        //链表结构 - 查找到最后一个节点
                        if ((e = e.next) == null)
                            return null;
                    }
                }
            }
        }
    

    推荐参考:ConcurrentHashMap


    欢迎疑问、期待评论、感谢指点 -- kiqi,愿同您为友

    -- 星河有灿灿,愿与之辉

  • 相关阅读:
    python--数据可视化
    python--数据处理与探索
    如何使用.NET开发全版本支持的Outlook插件产品(四)——进阶探讨
    如何使用.NET开发全版本支持的Outlook插件产品(三)——全面控制
    对于.NET Socket连接的细节记录
    如何使用.NET开发全版本支持的Outlook插件产品(二)——完善插件
    如何使用.NET开发全版本支持的Outlook插件产品(一)——准备工作
    不建议双挖
    不要挖门罗
    关于PoW工作量证明的不公平
  • 原文地址:https://www.cnblogs.com/kiqi/p/14420577.html
Copyright © 2020-2023  润新知