• CoreML 简单使用


       今天简单使用了下CoreML , 我的这个模型功能主要是 打开摄像头,然后对准物体,会自动帮我们识别摄像头中的物体,并且给我们大概的百分比值

       代码如下:

        @IBAction func startClick(_ sender: Any) {
            startFlag = !startFlag
            if  startFlag {
                startCaptureVideo()
                startButton.setTitle("stop", for: .normal)
            }else {
                startButton.setTitle("start", for: .normal)
                stop()
            }
        
        }
        
     
        //1、初始化CaptureSeason
        lazy var captureSession:AVCaptureSession? = {
        //1.1 实例化 let captureSession = AVCaptureSession() captureSession.sessionPreset = .photo
       //1.2 获取默认设备 guard let captureDevice = AVCaptureDevice.default(for: .video) else { return nil } guard let captureDeviceInput = try? AVCaptureDeviceInput(device: captureDevice) else { return nil } captureSession.addInput(captureDeviceInput) let previewLayer = AVCaptureVideoPreviewLayer(session: captureSession) view.layer.addSublayer(previewLayer) previewLayer.frame = view.frame let dataOutput = AVCaptureVideoDataOutput() dataOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "kingboVision")) captureSession.addOutput(dataOutput) return captureSession }() func startCaptureVideo(){ captureSession?.startRunning() } func stop() { captureSession?.stopRunning() } func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { print("Camera was safe ") guard let pixelBuffer:CVPixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { print("nil object ") return } guard let model = try? VNCoreMLModel(for: SqueezeNet().model) else {return} let request = VNCoreMLRequest(model: model) { [unowned self](finishRequest, error) in // guard let results = finishRequest.results as? [VNClassificationObservation] else { return } guard let first = results.first else { return } DispatchQueue.main.async { self.descriptionLabel.text = "(first.identifier): (first.confidence * 100)%," } } print("start to VN") try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request]) }

    分为以下几步操作

    1、我们工程inf.plist 文件中添加摄像头权限说明

      Privacy - Camera Usage Description     相机权限设置
    
     Privacy - Microphone Usage Description  麦克风权限设置
    

    2、头文件引用

    import AVKit
    import Vision
    

    3、准备模型

    模型准备我这里是使用App 官网上的SqueezeNet模型

    4、将模型拖动到工程里面即可

    5、代码编写部分

     5.1 初始化AVCaptureSession

           let captureSession =  AVCaptureSession()
            captureSession.sessionPreset = .photo
    

     5.2 获取当前iPhone 设备控制,当作输入数据来源

    guard  let captureDevice = AVCaptureDevice.default(for: .video) else {
                return nil
            }

       captureSession.addInput(captureDeviceInput)

     5.3 设置输出数据

    //设置输出数据处理对象
    let dataOutput = AVCaptureVideoDataOutput() dataOutput.setSampleBufferDelegate(self, queue: DispatchQueue(label: "kingboVision")) captureSession.addOutput(dataOutput)

      AVCaptureVideoDataOutput 设置代理,处理数据流图片数据,因此当前ViewController需要实现AVCaptureVideoDataOutputSampleBufferDelegate 的代理,如下

       
    class ViewController: UIViewController ,AVCaptureVideoDataOutputSampleBufferDelegate{
    ......
    
    func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) {
            //将视频数据转成CVPixBuffer
            guard let pixelBuffer:CVPixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else
            {
                print("nil object ")
                return
            }
            // 这里SquzzedNet是我从苹果中直接获取的模型
            guard  let model = try? VNCoreMLModel(for: SqueezeNet().model) else {return}
            
            let request = VNCoreMLRequest(model: model) { [unowned self](finishRequest, error) in
                //处理数据分析进行业务处理
                guard let results = finishRequest.results as? [VNClassificationObservation]  else {
                    return
                }
                guard let first = results.first else {
                    return
                }
                DispatchQueue.main.async {
                    self.descriptionLabel.text = "(first.identifier): (first.confidence * 100)%,"
                }
            }
            print("start to VN")
            
            try? VNImageRequestHandler(cvPixelBuffer: pixelBuffer, options: [:]).perform([request])
        }
         .....
    }
    

    5.4 将当前的摄像头显示在指定的View 上,(我们这里使用当前VC 的view)

      let previewLayer = AVCaptureVideoPreviewLayer(session: captureSession)
            view.layer.addSublayer(previewLayer)
            previewLayer.frame = view.frame
    

    效果如下:

  • 相关阅读:
    2018杭电多校第六场1009(DFS,思维)
    Atcoder Regular Contest 085F(动态规划,线段树)
    IOS各类优化方案集锦
    iOS网络加载图片缓存策略之ASIDownloadCache缓存优化
    oc
    OC 内存管理机制总结
    ARC小知识
    oc常见误区
    常用第三方(分享,支付,二维码,语音,推送)
    UIKit,Core Data , Core Graphics, Core Animation,和OpenGLES框架
  • 原文地址:https://www.cnblogs.com/kingbo/p/11088538.html
Copyright © 2020-2023  润新知