• 图像的熵


          已知图像X,包含N个像素,p1,p2...pN,其中pi为灰度为i的像素个数,则图像的熵为

                           H(p1,p2...pN)=-∑pi*log pi

          图像的熵反映了图像包含的信息量大小,信息量越大,熵值H越大,图像的熵H具有以下特性

    1)对称性    

                    H(p1,p2...pN)=  H(p2,p1...pN)      pi可以任意置换

    2)归一性

                   对于2值图像,当图像灰度均匀时,即p0=p1

                    H(p1,p1)=H(1/2,1/2)= log2

    3)确定性             

                当pi=1,p1,p2...pi-1,pi+1,....pN=0时

                H(p1,p2...pN)= -log1 = 0

    4)极值性

                H(p1,p2...pN)<= H(1/N,1/N...1/N)=logN

    总结:

          图像的熵反映了图像包含的信息量

          1)当图像为纯色图时(纯白,纯黑图),图像只包含一个灰度值,此时熵最小,H=0(见定理3),图像的信息量为0。

                    因为图像为纯色时(灰度为一个值),也就说明图像不包含任何地物目标,信息量为0。(类似于空白地图)

          2)当图像包含N个灰度值时,即图像每个像素的灰度值都不同,此时熵最大,H=logN,图像的信息量最大。

                   因为此时,图像每个像素灰度都不同,可以认为图像每个单一像素都是一个独立地物目标,信息量为最大N。(类似于地图充满了地物)

         

             图像的熵H越大,图像包含的像素灰度越丰富,灰度分布越均匀,图像的地物目标越多,图像的信息量越大,反之则反。

             

              图像灰度分布越均匀(各个灰度值的像素个数一致& 图像灰度范围越大(N越大),图像的熵H=logN越大;

             一副图像,当每个像素的灰度都不同时(灰度一致并且灰度范围N最大),此时的最大。

  • 相关阅读:
    教你分分钟学会用python爬虫框架Scrapy爬取心目中的女神
    那些年,我们在Django web开发中踩过的坑(一)——神奇的‘/’与ajax+iframe上传
    刷题记录:[De1CTF 2019]Giftbox && Comment
    刷题记录:[强网杯 2019]Upload
    刷题记录:[XNUCA2019Qualifier]EasyPHP
    [RoarCTF 2019]simple_uplod
    [RoarCTF 2019]Online Proxy
    [RoarCTF]Easy Java
    [RoarCTF]Easy Calc
    刷题记录:[DDCTF 2019]homebrew event loop
  • 原文地址:https://www.cnblogs.com/king1302217/p/1920804.html
Copyright © 2020-2023  润新知