• mxnet decord 视频读取和载入


    Decord Video Reader Example

    import decord as de
    from matplotlib import pyplot as plt
    # using cpu in this example
    ctx = de.cpu(0)
    # example video
    video = 'Javelin_standing_throw_drill.mkv'
    
    vr = de.VideoReader(video)  # using default resolution
    print('Video frames #:', len(vr))       # 视频帧数
    print('First frame shape:', vr[0].shape)      # 每帧的shape
    Video frames #: 48
    First frame shape: (240, 320, 3)

    控制帧的尺寸:

    vr = de.VideoReader(video, width=120, height=240)
    print('Frame shape:', vr[0].shape)
    Frame shape: (240, 120, 3)

    随机访问显然很慢,但decord使用内部优化来确保不会在这里浪费太多精力。
    返回的帧是DLPack兼容的NDArray格式(例如在TVM中使用),可转为numpy数组。
    decord中有一个桥接系统,它自动将所有输出转换为与深度学习框架兼容的阵列,例如MXNet、PyTorch、Tensorflow。但始终可以利用numpy数组。

    frame10 = vr[10].asnumpy()
    plt.imshow(frame10)
    plt.show()

    很容易一起获得许多帧:

    frames = vr.get_batch(range(0, len(vr) - 1, 5))
    print(frames.shape)
    (10, 240, 120, 3)

    Decord Video Loader Example

    import sys, os
    import decord as de
    
    
    # using cpu in this example
    ctx = de.cpu(0)
    # using batchsize = 2 and smaller resolution in this example
    shape = (2, 480, 640, 3)
    # using kinetics example videos
    videos = ['Javelin_standing_throw_drill.mkv', 'flipping_a_pancake.mkv']
    # using in-batch frame interval 5
    interval = 5        # 一个batch中每两帧的距离
    # using inter-batch frame interval 20, which means batch-batch interval is 20
    skip = 3      # 不同batch之间的距离
    
    
    # first see how sequential read looks like
    vl = de.VideoLoader(videos, ctx=ctx, shape=shape, interval=interval, skip=skip, shuffle=0)
    print('num batches:', len(vl))
    num batches: 9

    可视化:

    def disp_batches(video_loader, max_disp=5):
        %matplotlib inline
        from matplotlib import pyplot as plt
        import matplotlib.gridspec as gridspec
        cnt = 0
        vl.reset()
        for batch in vl:
            if cnt >= max_disp:
                break
            print('batch data shape:', batch[0].shape)
            print('indices:', ', '.join(['(file: {} frame: {})'.format(x, y) for x, y in batch[1].asnumpy()]))
            print('----------')
            data = batch[0].asnumpy()
            columns = 4
            rows = max(1, (data.shape[0] + 1) // columns)
            fig = plt.figure(figsize = (32,(16 // columns) * rows))
            gs = gridspec.GridSpec(rows, columns)
            for i in range(data.shape[0]):
                plt.subplot(gs[i])
                plt.axis("off")
                plt.imshow(data[i])
            cnt += 1
    disp_batches(vl, 5)
    batch data shape: (2, 480, 640, 3)
    indices: (file: 0 frame: 0), (file: 0 frame: 7)      # 0-7共6帧;间隔为3,下一次从11开始
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 0 frame: 11), (file: 0 frame: 18)    # 11-18共6帧;间隔为3,下一次从22开始...
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 0 frame: 22), (file: 0 frame: 29)
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 0), (file: 1 frame: 7)
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 11), (file: 1 frame: 18)
    ----------

    可以看到这个是从第一个视频截取、然后第二个...那么可以按照如下进行shuffle:

    vl = de.VideoLoader(videos, ctx=ctx, shape=shape, interval=interval, skip=skip, shuffle=2)
    print('num batches:', len(vl))
    disp_batches(vl, 5)
    num batches: 8
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 33), (file: 1 frame: 40)      # file1中截取
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 22), (file: 1 frame: 29)
    ----------
    batch data shape: (2, 480, 640, 3) 
    indices: (file: 0 frame: 11), (file: 0 frame: 18)       # file0中截取
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 44), (file: 1 frame: 51)
    ----------
    batch data shape: (2, 480, 640, 3)
    indices: (file: 1 frame: 11), (file: 1 frame: 18)
    ----------

    可以看到已经不是按照视频顺序截取了。

  • 相关阅读:
    JavaScript.convertArray
    JavaScript.InjectedScriptHost
    linux基础之ssh
    linux基础之常见的文件查看命令
    linux基础之ls命令
    windows安装zabbix客户端及加入监控
    centons7编译安装zabbix3.4
    gitlab备份、还原及迁移
    gitlab在centons环境下的安装及使用
    Python操作sqlserver
  • 原文地址:https://www.cnblogs.com/king-lps/p/13062801.html
Copyright © 2020-2023  润新知