• Cyclic Components CodeForces


    Cyclic Components CodeForces - 977E

    You are given an undirected graph consisting of nn vertices and mm edges. Your task is to find the number of connected components which are cycles.

    Here are some definitions of graph theory.

    An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex aa is connected with a vertex bb, a vertex bb is also connected with a vertex aa). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.

    Two vertices uu and vv belong to the same connected component if and only if there is at least one path along edges connecting uu and vv.

    A connected component is a cycle if and only if its vertices can be reordered in such a way that:

    • the first vertex is connected with the second vertex by an edge,
    • the second vertex is connected with the third vertex by an edge,
    • ...
    • the last vertex is connected with the first vertex by an edge,
    • all the described edges of a cycle are distinct.

    A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.

                                                            

    There are 6 connected components, 2 of them are cycles: [7,10,16]and [5,11,9,15].

    Input

    The first line contains two integer numbers nn and mm (1n210^5,  0≤m≤2⋅10^5) — number of vertices and edges.

    The following mm lines contains edges: edge ii is given as a pair of vertices viui (1≤vi,ui≤n, uivi). There is no multiple edges in the given graph, i.e. for each pair (vi,ui) there no other pairs (vi,ui) and (vi,ui) in the list of edges.

    Output

    Print one integer — the number of connected components which are also cycles.

    Examples
    input
    Copy
    5 4
    1 2
    3 4
    5 4
    3 5
    output
    Copy
    1
    input
    Copy
    17 15
    1 8
    1 12
    5 11
    11 9
    9 15
    15 5
    4 13
    3 13
    4 3
    10 16
    7 10
    16 7
    14 3
    14 4
    17 6
    output
    Copy
    2
    Note

    In the first example only component [3,4,5] is also a cycle.

    The illustration above corresponds to the second example.

    分析:DFS 如果其中一个连通图的所有点的度数都为2就符合题意(搜索完某一连通图就把该连通图的所有点做标记,不再访问)

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    const int N = 200000 + 5; 
    vector<int> a[N];
    int vis[N];
    int flag = 1;
    void dfs(int cur) {
        vis[cur] = 1;
        if(a[cur].size() != 2) flag = 0;
        for(int i : a[cur]) {
            if(!vis[i]) dfs(i);
        }
    } 
    int main() {
        int n, m;
        scanf("%d%d", &n, &m);
        int x, y;
        for(int i = 0; i < m; i++) {
            scanf("%d%d", &x, &y);
            a[x].push_back(y);
            a[y].push_back(x);
        }
        memset(vis, 0, sizeof(vis));
        int ans = 0;
        for(int i = 1; i <= n; i++) {
            flag = 1;    
            if(!vis[i]) {
                dfs(i);
                if(flag) ans++;
            }
        }
        printf("%d
    ", ans);
        return 0;
    }
    作者:kindleheart
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。
  • 相关阅读:
    多态
    163VIP邮箱哪个好?为什么要使用邮箱客户端?
    163邮箱的格式什么样的?常见的电子邮箱品牌有哪些?
    申请企业邮箱需要准备什么材料?外贸邮箱怎么注册?
    《10秒挑战》h5游戏案例分析
    H5反应类爆款游戏分享
    企业邮箱多少钱,哪家企业邮箱更具性价比?
    注册申请企业邮箱,哪家最优惠 #万元礼包来袭#
    购买一个163VIP邮箱,3位超短靓号更惊喜~
    小程序对H5游戏的技术分析
  • 原文地址:https://www.cnblogs.com/kindleheart/p/9069395.html
Copyright © 2020-2023  润新知