• 51Nod 1212无向图最小生成树


    prim

    #include<stdio.h>
    #include<string.h>
    #define inf 0x3f3f3f3f
    int G[1001][1001];
    int vis[1001],lowc[1001];
    int prim(int G[][1001],int n){
        int i,j,p,minc,res=0;
        memset(vis,0,sizeof(vis));//全部初值为0表示没有访问过;
        vis[1]=1;
        for(i=2;i<=n;i++)
            lowc[i]=G[1][i];
        for(i=2;i<=n;i++){
            minc=inf;
            p=-1;
            for(j=1;j<=n;j++){
                if(vis[j]==0&&lowc[j]<minc)
                    {minc=lowc[j];p=j;}
            }
            if(inf==minc) return -1;//原图不连通
            res+=minc;
            vis[p]=1;
            for(j=1;j<=n;j++){//更新lowc[]
                if(vis[j]==0&&lowc[j]>G[p][j])
                    lowc[j]=G[p][j];
            }
        }
        return res;
    }
    int main(){
        int n,m;
        int x,y,w;
        while(~scanf("%d %d",&n,&m)){
            memset(G,inf,sizeof(G));
            while(m--){
                scanf("%d%d%d",&x,&y,&w);
                G[x][y]=G[y][x]=w;
            }
            printf("%d
    ",prim(G,n));
        }
    }

    Kruskal

    #include<iostream>    
    #include<cstring>    
    #include<string>    
    #include<cstdio>    
    #include<algorithm>    
    using namespace std;    
    #define MAX 50005    
    int father[MAX], son[MAX];    
    int v, l;    
        
    typedef struct Kruskal //存储边的信息    
    {    
        int a;    
        int b;    
        int value;    
    };    
        
    bool cmp(const Kruskal & a, const Kruskal & b)    
    {    
        return a.value < b.value;    
    }    
        
    int unionsearch(int x) //查找根结点+路径压缩    
    {    
        return x == father[x] ? x : unionsearch(father[x]);    
    }    
        
    bool join(int x, int y) //合并    
    {    
        int root1, root2;    
        root1 = unionsearch(x);    
        root2 = unionsearch(y);    
        if(root1 == root2) //为环    
            return false;    
        else if(son[root1] >= son[root2])    
            {    
                father[root2] = root1;    
                son[root1] += son[root2];    
            }    
            else    
            {    
                father[root1] = root2;    
                son[root2] += son[root1];    
            }    
        return true;    
    }    
        
    int main()    
    {    
        int ncase, ltotal, sum, flag;    
        Kruskal edge[MAX];    
            scanf("%d%d", &v, &l);    
            ltotal = 0, sum = 0, flag = 0;    
            for(int i = 1; i <= v; ++i) //初始化    
            {    
                father[i] = i;    
                son[i] = 1;    
            }    
            for(int i = 1; i <= l ; ++i)    
            {    
                scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);    
            }    
            sort(edge + 1, edge + 1 + l, cmp); //按权值由小到大排序    
            for(int i = 1; i <= l; ++i)    
            {    
                if(join(edge[i].a, edge[i].b))    
                {    
                    ltotal++; //边数加1    
                    sum += edge[i].value; //记录权值之和    
                    //cout<<edge[i].a<<"->"<<edge[i].b<<endl;    
                }    
                if(ltotal == v - 1) //最小生成树条件:边数=顶点数-1    
                {    
                    flag = 1;    
                    break;    
                }    
            }    
            if(flag) printf("%d
    ", sum);    
            else printf("data error.
    ");      
        return 0;    
    }    
  • 相关阅读:
    宏------进阶

    公司用中会用到的iOS开源库和第三方组件(不断更新...)
    iOS 开发者旅途中的指南针
    国际化
    Block
    git简单使用教程
    XCode自带解析SAX解析
    GDataXMLNode解析XML
    Predicate
  • 原文地址:https://www.cnblogs.com/kimsimple/p/7215423.html
Copyright © 2020-2023  润新知