• mlp房价预测


    mlp房价预测

    跟着李沐的动手学深度学习,跟着写了一遍房价预测的处理和预测,加了一些注释,同时稍微改动了一些地方,把线性回归改成了mlp
    由于数据集比较小而且没有缺失值,这里也没有去做特征工程,如果特征量比较多的话,直接用pd.dummies()会出现很多无用特征,所以在特征比较多且数据量大的情况下还是要先做特征工程,删去一些特征
    之后有空再去做kaggle上的比赛

    import hashlib
    import os
    import tarfile
    import zipfile
    import requests
    
    DATA_HUB = dict()
    DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
    
    def download(name, cache_dir = os.path.join('..', 'data')):  
        """下载一个DATA_HUB中的文件,返回本地文件名。"""
        assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}."
        url, sha1_hash = DATA_HUB[name]
        os.makedirs(cache_dir, exist_ok=True)
        fname = os.path.join(cache_dir, url.split('/')[-1])
        if os.path.exists(fname):
            sha1 = hashlib.sha1()
            with open(fname, 'rb') as f:
                while True:
                    data = f.read(1048576)
                    if not data:
                        break
                    sha1.update(data)
            if sha1.hexdigest() == sha1_hash:
                return fname
        print(f'正在从{url}下载{fname}...')
        r = requests.get(url, stream=True, verify=True)
        with open(fname, 'wb') as f:
            f.write(r.content)
        return fname
    
    
    %matplotlib inline
    import numpy as np
    import pandas as pd
    import torch
    from torch import nn
    import matplotlib.pyplot as plt
    # from d2l import torch as d2l
    from torch.utils import data
    
    DATA_HUB['kaggle_house_train'] = (  
        DATA_URL + 'kaggle_house_pred_train.csv',
        '585e9cc93e70b39160e7921475f9bcd7d31219ce')
    
    DATA_HUB['kaggle_house_test'] = (  
        DATA_URL + 'kaggle_house_pred_test.csv',
        'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
    
    train_data = pd.read_csv(download('kaggle_house_train'))
    test_data = pd.read_csv(download('kaggle_house_test'))
    
    print(train_data.shape)
    print(test_data.shape)
    print(train_data.iloc[:4,[0,1,2,-3,-2,-1]])
    print(test_data.iloc[:4,[0,1,2,-3,-2,-1]])
    
    # 把训练集+测试集的特征放到一起,训练集的第0列是ID要去除,最后一列是标签
    all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]), axis = 0)
    print(all_features.shape)
    
    # 找出所有数值列
    numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
    # 对数值列用非nan值的均值填充nan
    all_features[numeric_features] = all_features[numeric_features].apply(
        lambda x : x.fillna( value = x[[y is not np.nan for y in x]].mean() ) )
    # 标准化所有数值列,变成均值为0,方差为1
    all_features[numeric_features] = all_features[numeric_features].apply(
        lambda x : (x - x.mean()) / x.std())
    # 用OneHot编码替换离散值
    all_features = pd.get_dummies(all_features, dummy_na = True)
    print(all_features.shape)
    
    
    
    # 转化成torch.tensor类型
    n_train = train_data.shape[0]
    train_features = torch.tensor(all_features[:n_train].values,
                                  dtype = torch.float32)
    test_features = torch.tensor(all_features[n_train:].values,
                                 dtype = torch.float32)
    train_labels = torch.tensor(train_data.SalePrice.values.reshape(-1,1),
                                dtype = torch.float32)
    
    
    
    # 定义训练用的损失函数
    loss = nn.MSELoss()
    # 输入特征数
    in_features = train_features.shape[1]
    
    # 线性回归模型
    # def get_net():
    #    net = nn.Sequential(nn.Linear(in_features, 1))
    #    return net
    
    # mlp
    def get_net():
        net = nn.Sequential(nn.Linear(in_features, 256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, 1))
    #     net = nn.Sequential(nn.Linear(in_features, 1))
        return net
    
    # y的值比较大,所以都先取一个log,缩小范围,再用均方根误差
    def log_rmse(net, features, labels):
        # torch.clamp(input, min, max, out=None) → Tensor
        # 将输入input张量每个元素的夹紧到区间 [min,max],并返回结果到一个新张量。
        clipped_preds = torch.clamp(net(features), 1, float('inf'))
        rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels)))
        return rmse.item()
    
    # 训练函数
    def train(net, train_features, train_labels, test_features, test_labels,
             num_epochs, learning_rate, weight_decay, batch_size):
        # 数据迭代器,用于每次得到随机的一组batch
        train_iter = data.DataLoader(dataset = data.TensorDataset(train_features, train_labels),
                                    batch_size = batch_size,
                                    shuffle = True,
                                    num_workers = 4,
                                    drop_last = True)
        # 设置优化器, 这里用了Adam
        optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate,
                                    weight_decay = weight_decay)
        # 保存每一轮迭代之后的损失
        train_ls, test_ls = [], []
        # num_epochs轮训练
        for epoch in range(num_epochs):
            # 变成train模式
            net.train()
            for X, y in train_iter:
                optimizer.zero_grad()
                l = loss(net(X), y)
                l.backward()
                optimizer.step()
            # 变成eval模式
            net.eval()
            train_ls.append(log_rmse(net, train_features, train_labels))
            if test_labels is not None:
                test_ls.append(log_rmse(net, test_features, test_labels))
        return train_ls, test_ls
    
    # k折交叉验证,训练数据在第i折,X: 特征, y: 标签
    def get_k_fold_data(k, i, X, y):
        # 要保证k>1
        assert k > 1
        fold_size = X.shape[0] // k
        X_train, y_train = None, None
        for j in range(k):
            # slice用于获取一个切片对象 https://m.runoob.com/python/python-func-slice.html
            idx = slice(j * fold_size, (j + 1) * fold_size)
            X_part, y_part = X[idx,:], y[idx]
            if j == i:
                X_valid, y_valid = X_part, y_part
            elif X_train is None:
                X_train, y_train = X_part, y_part
            else:
                X_train = torch.cat([X_train, X_part], 0)
                y_train = torch.cat([y_train, y_part], 0)
        return X_train, y_train, X_valid, y_valid
    
    
    # k折交叉验证
    def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size):
        # k折交叉验证的平均训练集损失和验证集损失
        train_l_sum, valid_l_sum = 0, 0
        for i in range(k):
            data = get_k_fold_data(k, i, X_train, y_train)
            net = get_net()
            # *data用于把data解包成X_train, y_train, X_test, y_test
            train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size)
            train_l_sum += train_ls[-1]
            valid_l_sum += valid_ls[-1]
            if i == 0:
                plt.figure()
                plt.xlabel('epoch')
                plt.ylabel('rmse') 
                plt.xlim([1, num_epochs])
                plt.plot(list(range(1,num_epochs + 1)), train_ls, label = 'train')
                plt.yscale('log')
                plt.plot(list(range(1,num_epochs + 1)), valid_ls, label = 'valid')
                plt.legend()
                plt.show()
            print(f'fold {i+1}, train log rmse {float(train_ls[-1]):f}, valid log rmse {float(valid_ls[-1]):f}, ')
        # 取平均损失
        return train_l_sum / k, valid_l_sum / k
    
    
    k, num_epochs, lr, weight_decay, batch_size = 5, 30, 0.05, 0.3, 64
    train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
    print(f'{k}-折验证:平均训练log rmse: {float(train_l):f}, 平均验证log rmse: {float(valid_l):f}')
    
    
    def train_and_pred(train_features, test_features, train_labels, test_data,
                       num_epochs, lr, weight_decay, batch_size):
        net = get_net()
        train_ls, _ = train(net, train_features, train_labels, None, None,
                            num_epochs, lr, weight_decay, batch_size)
        print(f'train log rmse {float(train_ls[-1]):f}')
        plt.figure()
        plt.xlabel('epoch')
        plt.ylabel('rmse') 
        plt.xlim([1, num_epochs])
        plt.plot(list(range(1,num_epochs + 1)), train_ls)
        plt.yscale('log')
        plt.show()
        # 转换成eval模式
        net.eval()
        preds = net(test_features).detach().numpy()
        test_data['SalePrice'] = pd.Series(preds.reshape(1,-1)[0])
        submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis = 1)
        submission.to_csv('submission.csv', index = False)
    
    
    
    train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)
    

    k折交叉验证时的误差:

    最后训练得到的网络的误差:

  • 相关阅读:
    重读《从菜鸟到测试架构师》-- 职业生涯的考虑
    重读《从菜鸟到测试架构师》-- 从专家到高手
    重读《从菜鸟到测试架构师》-- 开发团队做的远不仅是开发
    重读《从菜鸟到测试架构师》-- 测试专家的第一步
    重读《从菜鸟到测试架构师》-- 前篇
    使用Nodejs+Protractor搭建测试环境
    简单的算法题之合并数组
    性能测试流程
    性能测试基础
    电脑木马
  • 原文地址:https://www.cnblogs.com/kikokiko/p/14901618.html
Copyright © 2020-2023  润新知