• 2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)(9/11)


    $$2017-2018 ACM-ICPC German Collegiate Programming Contest (GCPC 2017)$$

    (A.Drawing Borders)

    (B.Buildings)

    Polya定理搞一搞

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    using LL = int_fast64_t;
    const LL MOD = 1e9+7;
    int n,m,c;
    LL qpow(LL a, LL b){
        LL ret = 1;
        while(b){
            if(b&1) ret = ret * a % MOD;
            b >>= 1;
            a = a * a % MOD;
        }
        return ret;
    }
    LL inv(LL x){ return qpow(x,MOD-2); }
    int main(){
        ____();
        cin >> n >> m >> c;
        LL ret = 0;
        for(int i = 0; i < m; i++) ret = (ret + qpow(qpow(c,n*n),__gcd(i,m))) % MOD;
        ret = (ret * inv(m)) % MOD;
        cout << ret << endl;
        return 0;
    }
    

    (C.Joyride)

    DP,(dp[i][j])表示当前时间为(i),且当前在(j)号点处的最小花费,分两种情况转移

    • 在原地不动,位置不变
    • 去另一个位置
    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1111;
    int x,n,m,t,f[MAXN][MAXN];
    const int INF = 0x3f3f3f3f;
    pair<int,int> pr[MAXN];
    vector<int> G[MAXN];
    int main(){
        ____();
        cin >> x >> n >> m >> t;
        for(int i = 1; i <= m; i++){
            int u, v;
            cin >> u >> v;
            G[u].emplace_back(v);
            G[v].emplace_back(u);
        }
        for(int i = 1; i <= n; i++) cin >> pr[i].first >> pr[i].second;
        memset(f,0x3f,sizeof(f));
        if(x<pr[1].first){
            cout << "It is a trap." << endl;
            return 0;
        }
        f[pr[1].first][1] = pr[1].second;
        for(int c = pr[1].first; c < x; c++){
            for(int u = 1; u <= n; u++){
                if(c+pr[u].first<=x) f[c+pr[u].first][u] = min(f[c+pr[u].first][u],f[c][u]+pr[u].second);
                for(int v : G[u]){
                    int cost = t + pr[v].first;
                    if(c+cost>x) continue;
                    f[c+cost][v] = min(f[c+cost][v],f[c][u]+pr[v].second);
                }
            }
        }
        int ret = f[x][1];
        if(ret==INF) cout << "It is a trap." << endl;
        else cout << ret << endl;
        return 0;
    }
    

    (D.Pants On Fire)

    Floyd传递闭包

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 222;
    map<string,int> msk;
    int n,m,ID;
    bool G[MAXN][MAXN];
    int main(){
        ____();
        cin >> n >> m;
        for(int i = 1; i <= n; i++){
            int u,v;
            string s;
            cin >> s;
            if(!msk.count(s)) msk.insert(make_pair(s,++ID));
            u = msk.at(s);
            cin >> s >> s >> s >> s;
            if(!msk.count(s)) msk.insert(make_pair(s,++ID));
            v = msk.at(s);
            G[u][v] = true;
        }
        for(int k = 1; k <= ID; k++) for(int i = 1; i <= ID; i++) for(int j = 1; j <= ID; j++){
            G[i][j] = (G[i][j] or (G[i][k] and G[k][j]));
        }
        for(int i = 1; i <= m; i++){
            int u, v;
            string s;
            cin >> s;
            if(!msk.count(s)) msk.insert(make_pair(s,++ID));
            u = msk.at(s);
            cin >> s >> s >> s >> s;
            if(!msk.count(s)) msk.insert(make_pair(s,++ID));
            v = msk.at(s);
            if(G[u][v]) cout << "Fact" << endl;
            else if(G[v][u]) cout << "Alternative Fact" << endl;
            else cout << "Pants on Fire" << endl;
        }
        return 0;
    }
    

    (E.Perpetuum Mobile)

    建图spfa判正环,可以对权值取(log)就可以转换为权值加和

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 888;
    int n,m,vis[MAXN],inq[MAXN];
    double dist[MAXN];
    vector<pair<int,double> > G[MAXN];
    bool spfa(){
        queue<int> que;
        memset(inq,0,sizeof(inq));
        fill(dist,dist+MAXN,0);
        fill(vis,vis+MAXN,1);
        for(int i = 1; i <= n; i++) que.push(i);
        while(!que.empty()){
            int u = que.front();
            que.pop();
            vis[u] = false;
            for(auto e : G[u]){
                int v = e.first;
                double d = e.second;
                if(dist[u]+d>dist[v]){
                    dist[v] = dist[u] + d;
                    if(!vis[v]){
                        vis[v] = true;
                        inq[v]++;
                        if(inq[v]>=n) return true;
                        que.push(v);
                    }
                }
            }
        }
        return false;
    }
    int main(){
        cin >> n >> m;
        for(int i = 1; i <= m; i++) {
            int u, v;
            double conv;
            cin >> u >> v >> conv;
            G[u].emplace_back(make_pair(v,log(conv)));
        }
        if(spfa()) cout << "inadmissible" << endl;
        else cout << "admissible" << endl;
        return 0;
    }
    

    (F.Plug It In)

    暴力枚举,每次跑二分图匹配,这样的复杂度是(n^3),会T
    考虑加上新的点之后,之前的匹配是不变的,所以可以先把之前的匹配保存下来,每次枚举的时候找增广路即可

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1507;
    vector<int> G[MAXN];
    int m,n,k,match[MAXN],tot,pmt[MAXN];
    bool vis[MAXN];
    bool dfs(int u){
        vis[u] = true;
        for(int v : G[u]){
            if(match[v]==-1 or (!vis[match[v]] and dfs(match[v]))){
                match[v] = u;
                return true;
            }
        }
        return false;
    }
    void hungary(){
        memset(match,255,sizeof(match));
        for(int i = 1; i <= m; i++){
            memset(vis,false,sizeof(vis));
            if(dfs(i)) tot++;
        }
    }
    int main(){
        ____();
        cin >> m >> n >> k;
        for(int i = 1; i <= k; i++){
            int u, v;
            cin >> u >> v;
            G[u].emplace_back(v);
        }
        hungary();
        for(int i = 1; i <= n; i++) pmt[i] = match[i];
        int add = 0;
        for(int i = 1; i <= m; i++){
            int tmp = 0;
            for(int j = 1; j <= n; j++) match[j] = pmt[j];
            G[m+1].clear();
            copy(G[i].begin(),G[i].end(),back_inserter(G[m+1]));
            memset(vis,false,sizeof(vis));
            if(dfs(m+1)){
                tmp++;
                G[m+2].clear();
                copy(G[m+1].begin(),G[m+1].end(),back_inserter(G[m+2]));
                memset(vis,false,sizeof(vis));
                if(dfs(m+2)) tmp++;
            }
            add = max(add,tmp);
        }
        cout << tot + add << endl;
        return 0;
    }
    

    (G.Water Testing)

    皮克定理,顶点为整点的多边形的面积S=多边形内部整点数A+(多边形边上整点数B/2)-1
    多边形面积可以用向量差积来求
    所以(A=S+1-B/2)

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e5+7;
    using LL = int_fast64_t;
    int n;
    pair<LL,LL> pt[MAXN];
    pair<LL,LL> vect(const pair<LL,LL> &A, const pair<LL,LL> &B){
        return make_pair(B.first-A.first,B.second-A.second);
    }
    LL xpro(const pair<LL,LL> &A, const pair<LL,LL> &B){
        return A.first * B.second - B.first * A.second;
    }
    LL cal(const pair<LL,LL> &A, const pair<LL,LL> &B){
        return __gcd(abs(A.first-B.first),abs(A.second-B.second)) - 1;
    }
    int main(){
        ____();
        cin >> n;
        for(int i = 1; i <= n; i++) cin >> pt[i].first >> pt[i].second;
        LL dbarea = 0;
        for(int i = 2; i < n; i++) dbarea += xpro(vect(pt[1],pt[i]),vect(pt[1],pt[i+1]));
        dbarea = dbarea < 0 ? - dbarea : dbarea;
        LL tot = n;
        for(int i = 1; i < n; i++) tot += cal(pt[i],pt[i+1]);
        tot += cal(pt[1],pt[n]);
        cout << (dbarea-tot+2)/2 << endl;
        return 0;
    }
    

    (H.Ratatoskr)

    考虑如何采取最佳决策,对于松鼠,最佳位置就是在两只乌鸦中间,这样不管乌鸦怎么跑,松鼠都可以从起飞的乌鸦的那一边走,对于乌鸦的最佳决策就是两只乌鸦交替向松鼠的方向移动,把松鼠逼到叶子节点即可,所以最差的情况,就是找一个根节点,然后把松鼠逼到叶子节点上,也就是找任意点为根的最大深度的最小值(这个情况下就是先堵住根节点,然后推进到叶子节点)。
    还有一种情况就是,一只乌鸦先固定,然后往松鼠存在的那棵子树上逼近即可

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 88;
    vector<int> G[MAXN];
    int n,r,h,m,vis[MAXN];
    int dfs(int u, int f, int d){
        int maxd = d; vis[u] = true;
        for(int v : G[u]) if(v!=f) maxd = max(maxd,dfs(v,u,d+1));
        return maxd;
    }
    int giao(int raven){
        memset(vis,0,sizeof(vis));
        for(int v : G[raven]){
            int dep = dfs(v,raven,1);
            if(vis[r]) return dep;
        }
    }
    int main(){
        ____();
        cin >> n >> r >> h >> m;
        for(int i = 1; i < n; i++){
            int u, v;
            cin >> u >> v;
            G[u].emplace_back(v);
            G[v].emplace_back(u);
        }
        int ret = MAXN;
        for(int i = 1; i <= n; i++) ret = min(ret,dfs(i,0,1));
        ret = min(ret,min(giao(h),giao(m)));
        cout << ret << endl;
        return 0;
    }
    

    (I.Uberwatch)

    DP,(dp[i])表示当前时刻为(i)的最多总分,状态转移方程为(dp[i]=max_{j=1}^{i-m}dp[j]+A[i])

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 3e5+7;
    int n,m,A[MAXN];
    struct SegmentTree{
        int maxx[MAXN<<2],l[MAXN<<2],r[MAXN<<2];
        #define ls(rt) rt << 1
        #define rs(rt) rt << 1 | 1
        #define pushup(rt) maxx[rt] = max(maxx[ls(rt)],maxx[rs(rt)])
        void build(int L, int R, int rt){
            l[rt] = L; r[rt] = R;
            if(L+1==R) return;
            int mid = (L + R) >> 1;
            build(L,mid,ls(rt)); build(mid,R,rs(rt));
        }
        void update(int pos, int rt, int x){
            if(l[rt]+1==r[rt]){
                maxx[rt] = x;
                return;
            }
            int mid = (l[rt] + r[rt]) >> 1;
            if(pos<mid) update(pos,ls(rt),x);
            else update(pos,rs(rt),x);
            pushup(rt);
        }
        int qmax(int L, int R, int rt){
            if(l[rt]>=R or L>=r[rt]) return 0;
            if(L<=l[rt] and r[rt]<=R) return maxx[rt];
            return max(qmax(L,R,ls(rt)),qmax(L,R,rs(rt)));
        }
    }ST;
    int main(){
        ____();
        cin >> n >> m;
        for(int i = 1; i <= n; i++) cin >> A[i];
        ST.build(1,n+1,1);
        for(int t = m + 1; t <= n; t++) ST.update(t,1,ST.qmax(1,t-m+1,1)+A[t]);
        cout << ST.qmax(1,n+1,1) << endl;
        return 0;
    }
    

    (J.Word Clock)

    (K.You Are Fired)

    签到

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1e4+7;
    pair<int,string> pr[MAXN];
    int n,d,k;
    int main(){
        ____();
        cin >> n >> d >> k;
        for(int i = 1; i <= n; i++) cin >> pr[i].second >> pr[i].first;
        sort(pr+1,pr+1+n,[](const pair<int,string> &A, const pair<int,string> &B){
            return A.first > B.first;
        });
        vector<string> vec;
        int tot = 0;
        for(int i = 1; i <= min(d,k); i++){
            tot += pr[i].first;
            vec.emplace_back(pr[i].second);
            if(tot>=d) break;
        }
        if(tot<d){
            cout << "impossible" << endl;
            return 0;
        }
        cout << vec.size() << endl;
        for(auto name : vec) cout << name << ", YOU ARE FIRED!" << endl;
        return 0;
    }
    
  • 相关阅读:
    [转] Immutable 常用API简介
    [转] 组件库按需加载 借助babel-plugin-import实现
    [转] react-router4 + webpack Code Splitting
    [转] React Hot Loader 3 beta 升级指南
    [转] 如何写好.babelrc?Babel的presets和plugins配置解析
    [转] webpack热更新配置小结
    [转] 学会fetch的用法
    [转] webpack3.0踩坑:postcss-loader的使用
    [转] 详解webpack-dev-server的使用
    webpack 使用环境变量
  • 原文地址:https://www.cnblogs.com/kikokiko/p/12519542.html
Copyright © 2020-2023  润新知