• 使用opencv和numpy实现矩阵相乘和按元素相乘 matrix multiplication vs element-wise multiplication


    本文首发于个人博客https://kezunlin.me/post/1e37a6/,欢迎阅读最新内容!

    opencv and numpy matrix multiplication vs element-wise multiplication

    Guide

    opencv

    Matrix multiplication is where two matrices are multiplied directly. This operation multiplies matrix A of size [a x b] with matrix B of size [b x c] to produce matrix C of size [a x c].

    In OpenCV it is achieved using the simple * operator:

    C = A * B  // Aab * Bbc = Cac
    

    Element-wise multiplication is where each pixel in the output matrix is formed by multiplying that pixel in matrix A by its corresponding entry in matrix B. The input matrices should be the same size, and the output will be the same size as well. This is achieved using the mul() function:

    output = A.mul(B); // A B must have same size !!!
    

    code

    cv::Mat cv_matmul(const cv::Mat& A, const cv::Mat& B)
    {
    	// matrix multipication    m*k,  k*n ===> m*n
    	cv::Mat C = A * B; 
    	return C; 
    }
    
    cv::Mat cv_mul(const cv::Mat& image, const cv::Mat& mask)
    {
    	// element-wise multiplication  output[i,j] = image[i,j] * mask[i,j]
    	cv::Mat output = image.mul(mask, 1.0); // m*n,  m*n
    	return output;
    }
    
    cv::Mat cv_multiply3x1(const cv::Mat& mat3, const cv::Mat& mat1)
    {
    	std::vector<cv::Mat> channels;
    	cv::split(mat3, channels);
    
    	std::vector<cv::Mat> result_channels;
    	for(int i = 0; i < channels.size(); i++)
    	{
    		result_channels.push_back(channels[i].mul(mat1));
    	}
    
    	cv::Mat result3;
    	cv::merge(result_channels, result3);
    	return result3;
    }
    
    cv::Mat cv_multiply3x3(const cv::Mat& mat3_a, const cv::Mat& mat3_b)
    {
    	cv::Mat a;
    	cv::Mat b;
    	cv::Mat c;
    
    	std::vector<cv::Mat> a_channels;
    	std::vector<cv::Mat> b_channels;
    	std::vector<cv::Mat> c_channels;
    
    	cv::split(mat3_a, a_channels);
    	cv::split(mat3_b, b_channels);
    
    	for(int i = 0; i < a_channels.size() || b_channels.size(); i++)
    	{
    		c_channels.push_back(a_channels[i].mul(b_channels[i]));
    	}
    
    	cv::merge(c_channels, c);
    	return c;
    }
    

    numpy

    numpy arrays are not matrices, and the standard operations *, +, -, / work element-wise on arrays.

    Instead, you could try using numpy.matrix, and * will be treated like matrix multiplication.

    code

    Element-wise multiplication code

    >>> img = np.array([1,2,3,4,5,6,7,8]).reshape(2,4)
    >>> mask = np.array([1,1,1,1,0,0,0,0]).reshape(2,4)
    >>> img * mask 
    array([[1, 2, 3, 4],
           [0, 0, 0, 0]])
    >>> 
    >>> np.multiply(img, mask)
    array([[1, 2, 3, 4],
           [0, 0, 0, 0]])
    

    for numpy.array, *and multiply work element-wise

    matrix multiplication code

    >>> a = np.array([1,2,3,4,5,6,7,8]).reshape(2,4)
    >>> b = np.array([1,1,1,1,0,0,0,0]).reshape(4,2)
    >>> np.matmul(a,b)
    array([[ 3,  3],
           [11, 11]])
    
    >>> np.dot(a,b)
    array([[ 3,  3],
           [11, 11]])
    
    >>> a = np.matrix([1,2,3,4,5,6,7,8]).reshape(2,4)
    >>> b = np.matrix([1,1,1,1,0,0,0,0]).reshape(4,2)
    >>> a
    matrix([[1, 2, 3, 4],
            [5, 6, 7, 8]])
    >>> b
    matrix([[1, 1],
            [1, 1],
            [0, 0],
            [0, 0]])
    >>> a*b
    matrix([[ 3,  3],
            [11, 11]])
    
    >>> np.matmul(a,b)
    matrix([[ 3,  3],
        	[11, 11]])
    

    for 2-dim, np.dot equals np.matmul
    for numpy.array, np.matmul means matrix multiplication;
    for numpy.matrix, * and np.matmul means matrix multiplication;

    Reference

    History

    • 20190109: created.

    Copyright

  • 相关阅读:
    Qt class加载头文件
    Qt 中KeyPressEvent获取不到Key_Space等事件
    如何选择开源许可证?
    C语言实现库函数汇总
    简单背包问题-递归非递归实现
    中点优先顺序遍历数组-递归非递归实现
    稀疏矩阵十字链表表示
    稀疏矩阵线性表示
    KMP模式匹配
    双向链表
  • 原文地址:https://www.cnblogs.com/kezunlin/p/12014628.html
Copyright © 2020-2023  润新知