• Minitab 控制图



    Minitab 控制图官方文档


    一、数据

    数据:

    数据1 数据2 数据3 子组ID
    601.4 598 601.6 1
    601.6 599.8 600.4 1
    598 600 598.4 1
    601.4 599.8 600 1
    599.4 600 596.8 1
    600 600 602.8 2
    600.2 598.8 600.8 2
    601.2 598.2 603.6 2
    598.4 599.4 604.2 2
    599 599.6 602.4 2
    601.2 599.4 598.4 3
    601 599.4 599.6 3
    600.8 600 603.4 3
    597.6 598.8 600.6 3
    601.6 599.2 598.4 3
    599.4 599.4 598.2 4
    601.2 599.6 602 4
    598.4 599 599.4 4
    599.2 599.2 599.4 4
    598.8 600.6 600.8 4
    601.4 598.8 600.8 5
    599 598.8 598.6 5
    601 599.8 600 5
    601.6 599.2 600.4 5
    601.4 599.4 600.8 5
    601.4 600 600.8 6
    598.8 600.2 597.2 6
    601.4 600.2 600.4 6
    598.4 599.6 599.8 6
    601.6 599 596.4 6
    598.8 599 600.4 7
    601.2 599.8 598.2 7
    599.6 600.8 598.6 7
    601.2 598.8 599.6 7
    598.2 598.2 599 7
    598.8 600 598.2 8
    597.8 599.2 599.4 8
    598.2 599.8 599.4 8
    598.2 601.2 600.2 8
    598.2 600.4 599 8
    601.2 600.2 599.4 9
    600 599.6 598 9
    598.8 599.6 597.6 9
    599.4 599.6 598 9
    597.2 600.2 597.6 9
    600.8 599.2 601.2 10
    600.6 599 599 10
    599.6 599.6 600.4 10
    599.4 600.4 600.6 10
    598 600 599 10
    600.8 599 602.2 11
    597.8 599.6 599.8 11
    599.2 599.4 599.8 11
    599.2 599.2 601 11
    600.6 597.8 601.6 11
    598 600.4 601.6 12
    598 599.6 600.2 12
    598.8 600 601.8 12
    601 600.8 601.2 12
    600.8 600.4 597.6 12
    598.8 599.4 599.8 13
    599.4 599 602.8 13
    601 598.4 600 13
    598.8 599 599.6 13
    599.6 599.6 602.2 13
    599 598.8 603.8 14
    600.4 599.2 603.6 14
    598.4 599.6 601.8 14
    602.2 598.6 602 14
    601 599.8 603.6 14
    601.4 599.6 600.8 15
    601 599.2 600.2 15
    601.2 599.6 600.4 15
    601.4 600.2 600.2 15
    601.8 599.8 602.2 15
    601.6 599.6 598 16
    601 600 598.4 16
    600.2 599.6 600.8 16
    599 599.2 602.8 16
    601.2 598.6 597.6 16
    601.2 599.6 601.6 17
    601.2 601.2 603.4 17
    601.2 599.6 597 17
    601 600.2 599.8 17
    601 600 597.8 17
    601.4 600 602.4 18
    601.4 599.4 602.2 18
    598.8 599.8 600.6 18
    598.8 599.2 596.2 18
    598.8 599.6 602.4 18
    598.2 599.4 601.4 19
    601.8 600 599.2 19
    601 600 601.6 19
    601.4 599.2 600.4 19
    601.4 599.4 598 19
    599 599.6 601.2 20
    601.4 599.8 604.2 20
    601.8 599 600.2 20
    601.6 599.6 600 20
    601.2 599.4 596.8 20

    数据4:

    子组ID PH值
    1 6.05
    2 5.99
    3 6.11
    4 6.13
    5 5.87
    6 6.05
    7 6.23
    8 6.49
    9 6.15
    10 5.89
    11 5.87
    12 5.99
    13 6.07
    14 6.17
    15 5.86
    16 6.07
    17 6.01
    18 5.87
    19 5.66
    20 5.58
    21 5.62
    22 5.89
    23 6.02
    24 5.93
    25 6.05

    数据5:

    子组ID \(x_1\) \(x_2\) \(x_3\)
    1 1.504 4.075 1.971
    2 1.685 4.599 2.26
    3 1.529 4.1 1.994
    4 1.554 4.19 2.024
    5 1.604 4.275 2.063
    6 1.664 4.341 2.12
    7 1.789 4.981 2.287
    8 1.723 4.416 2.166
    9 1.831 5.196 2.285
    10 1.622 4.353 2.135
    11 1.683 4.396 2.154
    12 1.598 4.329 2.18
    13 1.847 5.168 2.331
    14 1.793 4.547 2.184
    15 1.886 5.259 2.389
    16 1.631 4.338 2.073
    17 1.543 4.204 2.151
    18 1.665 4.48 2.282
    19 1.578 4.349 2.128
    20 1.533 4.28 2.039
    21 1.674 4.504 2.192
    22 1.749 4.371 2.155
    23 1.83 5.094 2.436
    24 1.813 4.989 2.428
    25 1.73 4.396 2.16


    二、控制限

    • 子组变量控制图的 n>1

    • w 的取值范围 [2, 100]

    1. Xbar-R 控制图的样本均值图

    \(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(\sigma\ =\ \frac{Rbar}{d_2(n_i)}\)


    \(μ = \bar{X}\):过程均值

    \(k\):检验 1 的参数,默认为 3

    \(n_{i}\):子组 i 的观测值个数

    \(Rbar\):子组极差的均值

    \(d_2\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_2\)

    \(d_{2}(n_i)=3.4873+0.0250141 \times n_i-0.00009823 \times n_i^{2}\ \ \ \ n_i\in[51,100]\)


    实例:数据1

    \[\begin{aligned} & ptp=[3.6,2.8,4.0,2.8,2.6,...,2.6,3.6,2.8] \\ & Rbar=\frac{3.6+2.8+4.0...+2.6+3.6+2.8}{20}=2.72 \\ & d_2(n_i)=d_2(5)=2.326 \\ & \sigma=\frac{Rbar}{d_2(n_i)}=1.169 \end{aligned} \]


    2. Xbar-S 控制图的样本均值图

    \(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(\sigma\ =\ \frac{Sbar}{C_4(n_i)}\)


    \(μ = \bar{X}\):过程均值

    \(k\):检验 1 的参数,默认为 3

    \(n_{i}\):子组 i 的观测值个数

    \(Sbar\):子组标准差的均值

    \(C_4(·)\):与括号指定的值相对应的无偏常量 \(C_4\) 值。计算公式为:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)


    实例:数据1

    \[\begin{aligned} & std=[1.596,1.090,1.615,...,1.459,1.140] \\ & Sbar=\frac{1.596+1.090+1.615+...+1.459+1.140}{20}=1.148 \\ & C_4(n_i)=C_4(5)=0.940 \\ & \sigma=\frac{Sbar}{C_4(n_i)}=1.221 \end{aligned} \]


    3. Xbar 控制图

    \(UCL\ =\ \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\)

    \(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


    \(μ = \bar{X}\):过程均值

    \(k\):检验 1 的参数,默认为 3

    \(n_{i}\):子组 i 的观测值个数

    \(\mu_v\):子组方差的均值

    \(C_4(·)\):与括号指定的值相对应的无偏常量 \(C_4\)值。计算公式为:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)

    \(d\):自由度。计算公式为:\(\sum{(n_i\ -\ 1})\)


    实例:数据1

    \[\begin{aligned} & var=[2.548,1.188,2.608,..., 2.128, 1.300] \\ & \mu_v=\frac{2.548+1.188+2.608+...+2.128+1.300}{20}=1.503 \\ & C_4(d+1)=C_4(m\times\ (n_i-1)+1)=C_4(20\times\ (5-1)+1)=0.997 \\ & \sigma=\frac{\sqrt\mu_v}{C_4(d+1)}=1.230 \end{aligned} \]


    4. R 控制图

    \(UCL\ =\ \mu_R\ +\ k\sigma\)

    \(CL\ =\ \mu_R\ =\ Rbar\)

    \(LCL\ =\ \mu_R\ -\ k\sigma\)

    \(\sigma\ =\ \frac{d_3\left(n_i\right)}{d_2\left(n_i\right)}·Rbar\)


    \(μ_R = Rbar\):子组极差的均值

    \(k\):检验 1 的参数,默认为 3

    \(n_{i}\):子组 i 的观测值个数

    \(d_2\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_2\)

    \(d_3\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_3\)

    \(d_{2}(n_i)=3.4873+0.0250141 \times n_i-0.00009823 \times n_i^{2}\ \ \ \ n_i\in[51,100]\)

    \(d_{3}(n_i)=0.80818-0.0051871 \times n_i-0.00049243 \times n_i^{3}\ \ \ \ n_i\in[51,100]\)


    实例:数据1

    \[\begin{aligned} & ptp=[3.6,2.8,4.0,2.8,2.6,...,2.6,3.6,2.8] \\ & Rbar=\frac{3.6+2.8+4.0...+2.6+3.6+2.8}{20}=2.72 \\ & d_2(n_i)=d_2(5)=2.326 \\ & d_3(n_i)=d_2(5)=0.8641 \\ & \sigma=\frac{d_3(n_i)}{d_2(n_i)}\times\ Rbar=1.010 \end{aligned} \]


    5. S 控制图

    \(UCL\ =\ \mu_S\ +\ k\sigma\)

    \(CL\ =\ \mu_S\ =\ Sbar\)

    \(LCL\ =\ \mu_S\ -\ k\sigma\)

    \(\sigma\ =\ \frac{C_5\left(n_i\right)}{C_4\left(n_i\right)}·Sbar\)


    \(μ_S = Sbar\):子组标准差的均值

    \(k\):检验 1 的参数,默认为 3

    \(n_{i}\):子组 i 的观测值个数

    \(C_4(·)\):与括号指定的值相对应的无偏常量 \(C_4\) 值。计算公式为:\(C_4(N)\ =\ \sqrt{\frac{2}{N-1}}\frac{\gamma(\frac{N}{2})}{\gamma(\frac{N-1}{2})}\)

    \(C_5(·)\):与括号指定的值相对应的无偏常量 \(C_5\) 值。计算公式为:\(C_5(N)\ =\ \sqrt{1-{C_4(N)}^2}\)


    实例:数据1

    \[\begin{aligned} & std=[1.596,1.090,1.615,...,1.459,1.140] \\ & Sbar=\frac{1.596+1.090+1.615+...+1.459+1.140}{20}=1.148 \\ & C_4(n_i)=C_4(5)=0.940 \\ & C_5(n_i)=C_5(5)=0.341 \\ & \sigma=\frac{C_5(n_i)}{C_4(n_i)}\times Sbar=0.417 \end{aligned} \]


    6. 单值控制图

    \(UCL\ =\ \mu\ +\ \frac{k\sigma}{\sqrt{n_i}}\ =\ \bar{X}\ +\ k\frac{\bar{R}}{d_2(w)}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ \frac{k\sigma}{\sqrt{n_i}}\ =\ \bar{X}\ -\ k\frac{\bar{R}}{d_2(w)}\)

    \(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


    \(μ = \bar{X}\):过程均值

    \(k\):检验 1 的参数,默认为 3

    \(n_i\):子组 i 的观测值个数,取值为 1

    \(w\):移动极差长度,默认为 2

    \(\bar{R}\):移动极差的均值

    \(d_2\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_2\)


    实例:数据4

    \[\begin{aligned} & ptp=[0.06,0.12,0.02,...,0.09,0.12] \\ & \bar{R}=\frac{0.06+0.12+0.02+...+0.09+0.12}{24}=0.152 \\ & d_2(w)=d_2(2)=1.128 \\ & \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \end{aligned} \]


    7. 移动极差控制图

    \(UCL\ =\ \bar{R}\ +\ k\sigma_R\ =\ \bar{R}+\ k\frac{d_3(w)}{d_2(w)}\bar{R}\)

    \(CL\ =\ \bar{R}\)

    \(LCL\ =\ \bar{R}\ -\ k\sigma_R\ =\ \bar{R}-\ k\frac{d_3(w)}{d_2(w)}\bar{R}\)

    \(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)

    \(\sigma_R\ =\ d_3(w)\sigma\ =\ \frac{d_3(w)}{d_2(w)}\bar{R}\)


    \(k\)​:检验 1 的参数,默认为 3

    \(w\):移动极差长度,默认为 2

    \(\bar{R}\):移动极差的均值

    \(d_2\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_2\)

    \(d_3\left(n_i\right)\):与括号中指定的值相对应的无偏常量 \(d_3\)


    实例:数据4

    \[\begin{aligned} & ptp=[0.06,0.12,0.02,...,0.09,0.12] \\ & \bar{R}=\frac{0.06+0.12+0.02+...+0.09+0.12}{24}=0.152 \\ & d_2(w)=d_2(2)=1.128 \\ & d_3(w)=d_3(2)=0.8525 \\ & \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ & \sigma_R=d_3(w)\sigma=\frac{d_3(w)}{d_2(w)}\times \bar{R}=0.115 \end{aligned} \]


    8. MA 控制图

    \(n_i>1\)时:

    \(i<mv\)

    \(UCL = \mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

    \(LCL = \mu\ -\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

    \(i≥mv\)

    \(UCL= \mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

    \(LCL= \mu\ -\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

    \(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


    \(n_i=1\)

    \(i<mv\)

    \(UCL = \mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

    \(LCL = \mu\ -\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}\)

    \(i≥mv\)

    \(UCL= \mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

    \(LCL= \mu\ -\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}\)

    \(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


    \(i\)​:遍历子组个数的取值(不是子组的观测值个数

    \(mv\):移动均值长度,默认为3​


    实例:

    数据1:\(n_i>1\)

    \[\begin{aligned} \sigma=\frac{\sqrt{\mu_v}}{C_4(d+1)}=1.230 \\ \\ ①\ i<mv: \\ & UCL_1=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=600.072+3(\frac{1.230}{1})\sqrt{\frac{1}{5}}=601.722 \\ & UCL_2=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=600.072+3(\frac{1.230}{2})\sqrt{\frac{2}{5}}=601.239 \\ ②\ i≥mv: \\ & UCL_4=\mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}=600.072+3(\frac{1.230}{3})\sqrt{\frac{3}{5}}=601.024 \\ \end{aligned} \]

    数据4:\(n_i=1\)

    \[\begin{aligned} \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ \\ ①\ i<mv: \\ & UCL_1=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=5.985+3(\frac{0.135}{1})\sqrt{\frac{1}{1}}=6.390 \\ & UCL_2=\mu\ +\ k(\frac{\sigma}{i})\sqrt{\frac{i}{n_i}}=5.985+3(\frac{0.135}{2})\sqrt{\frac{2}{1}}=6.272 \\ ②\ i≥mv: \\ & UCL_4=\mu\ +\ k(\frac{\sigma}{mv})\sqrt{\frac{mv}{n_i}}=5.985+3(\frac{0.135}{3})\sqrt{\frac{3}{1}}=6.219 \\ \end{aligned} \]


    9. EWMA 控制图

    \(n_i>1\) 时:

    \(UCL\ =\ \mu\ +\ k\sigma_Z\ = \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ k\sigma_Z\ = \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

    \(\sigma\ =\ \frac{\sqrt{\mu_v}}{C_4(d+1)}\)


    \(n_i=1\)

    \(UCL\ =\ \mu\ +\ k\sigma_Z\ = \mu\ +\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

    \(CL\ =\ \mu\ =\ \bar{X}\)

    \(LCL\ =\ \mu\ -\ k\sigma_Z\ = \mu\ -\ k\frac{\sigma}{\sqrt{n_i}}\sqrt{(\frac{r}{2-r})\left[1-\left(1-r\right)^{2i}\right]}\)

    \(\sigma\ =\ \frac{\bar{R}}{d_2(w)}\)


    \(r\)​:EWMA权重,默认为0.2


    实例:

    数据1:\(n_i>1\)

    \[\begin{aligned} \sigma=\frac{\sqrt{\mu_v}}{C_4(d+1)}=1.230 \\ & UCL_1=600.072+3\times \frac{1.230}{\sqrt{5}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{2}]}=600.402 \\ & UCL_1=600.072+3\times \frac{1.230}{\sqrt{5}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{4}]}=600.495 \\ \end{aligned} \]

    数据4:\(n_i=1\)

    \[\begin{aligned} \sigma=\frac{\bar{R}}{d_2(w)}=0.135 \\ & UCL_1=5.985+3\times \frac{0.135}{\sqrt{1}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{2}]}=6.066 \\ & UCL_1=5.985+3\times \frac{0.135}{\sqrt{1}}\sqrt{(\frac{0.2}{2-0.2})[1-(1-0.2)^{4}]}=6.089 \\ \end{aligned} \]


    10. T方控制图

    子组中的数据:数据1、数据2

    \(UCL = \frac{p(m-1)(n-1)}{mn-m-p+1}F(1-p\alpha,\ p,\ mn-m-p+1)\)

    \(LCL = 0\)

    单个观测值:数据4

    \(UCL=\frac{(m-1)^2}{m}\beta(1-\alpha,\ \frac{p}{2},\ \frac{m-p-1}{2})\)

    \(LCL=0\)


    \(\alpha\):固定值 \(0.00135\)

    \(p\)​:特征数

    \(m\):样本数

    \(n\):样本大小

    \(F\):F 分布 f.ppf(1-p*σ, p, m*n-m-p+1)

    \(\beta\):beta 分布 beta.ppf(1-σ, p/2, (m-p-1)/2)



    三、描绘点

    1. xbar 控制图

    数据1:

    第一个描绘点:

    \(\frac{601.4+601.6+598.0+601.4+599.4}{5} = 600.36\)

    第二个描绘点:

    \(\frac{600.0+600.2+601.2+598.4+599.0}{5} = 599.76\)

    第三个描绘点:

    \(\frac{601.2+601.0+600.8+597.6+601.6}{5} = 600.44\)

    第四个描绘点:

    \(\frac{599.4+601.2+598.4+599.2+598.8}{5} = 599.4\)


    2. S 控制图

    数据1:

    第一个描绘点:

    \(\sqrt[2]\frac{[(601.4-600.36)^2+(601.6-600.36)^2+(598.0-600.36)^2+(601.4-600.36)^2+(599.4-600.36)^2]}{4} = 1.596\)

    第二个描绘点:

    \(\sqrt[2]\frac{[(600-599.76)^2+(600.2-599.76)^2+(601.2-599.76)^2+(598.4-599.76)^2+(599-599.76)^2]}{4} = 1.090\)

    第三个描绘点:

    \(\sqrt[2]\frac{[(601.2-600.44)^2+(601-600.44)^2+(600.8-600.44)^2+(597.6-600.44)^2+(601.6-600.44)^2]}{4} = 1.615\)

    第四个描绘点:

    \(\sqrt[2]\frac{[(599.4-599.4)^2+(601.2-599.4)^2+(598.4-599.4)^2+(599.2-599.4)^2+(598.8-599.4)^2]}{4} = 1.077\)


    3. R 控制图

    数据1:

    第一个描绘点:\(601.6-598 = 3.6\)

    第二个描绘点:\(601.2-598.4 = 2.8\)

    第三个描绘点:\(601.6-597.6 = 4\)


    4. 单值控制图

    数据1、数据4:就是原始数据


    5. 移动极差控制图

    数据1:

    第二个描绘点:\(601.6-601.4 = 0.2\)

    第三个描绘点:\(601.6-598 = 3.6\)

    第四个描绘点:\(601.4-598 = 3.4\)

    数据4:

    第二个描绘点:\(6.05-5.99=0.06\)

    第三个描绘点:\(6.11-5.99 = 0.12\)

    第四个描绘点:\(6.13-6.11 = 0.02\)


    6. MA 控制图

    数据1:

    第一个描绘点:

    \(\frac{601.4+601.6+598.0+601.4+599.4}{5} = 600.36\)

    第二个描绘点:

    \(\frac{\frac{601.4+601.6+598.0+601.4+599.4}{5}+\frac{600.0+600.2+601.2+598.4+599.0}{5}}{2} = 600.06\)

    第三个描绘点:

    \(\frac{\frac{601.4+601.6+598.0+601.4+599.4}{5}+\frac{600.0+600.2+601.2+598.4+599.0}{5}+\frac{601.2+601.0+600.8+597.6+601.6}{5}}{mv} = 600.1876\)

    第四个描绘点:

    \(\frac{\frac{600.0+600.2+601.2+598.4+599.0}{5}+\frac{601.2+601.0+600.8+597.6+601.6}{5}+\frac{599.4+601.2+598.4+599.2+598.8}{5}}{mv} = 600.1876\)

    数据4:

    第一个描绘点:\(6.05\)

    第二个描绘点:\(\frac{6.05+5.99}{2}=6.02\)

    第三个描绘点:\(\frac{6.05+5.99+6.11}{mv}=6.05\)

    第四个描绘点:\(\frac{5.99+6.11+6.13}{mv}=6.0767\)


    7. EWMA 控制图

    数据1:

    第一个描绘点中的np.mean(datas)是对所有值求平均。

    除第一个描绘点外,其他描绘点的计算都与上一个描绘点有关。

    第一个描绘点:\(r\times\frac{601.4+601.6+598.0+601.4+599.4}{5}+(1-r)\times(np.mean(datas))=600.130\)

    第二个描绘点:\(r\times\frac{600.0+600.2+601.2+598.4+599.0}{5}+(1-r)\times600.13=600.056\)

    第三个描绘点:\(r\times\frac{601.2+601.0+600.8+597.6+601.6}{5}+(1-r)\times600.056=600.133\)

    第四个描绘点:\(r\times\frac{599.4+601.2+598.4+599.2+598.8}{5}+(1-r)\times600.133=599.986\)

    数据4:

    第一个描绘点:\(r\times6.05+(1-r)\times(np.mean(datas))=5.9978\)

    第二个描绘点:\(r\times5.99+(1-r)\times5.9978=5.9963\)

    第三个描绘点:\(r\times6.11+(1-r)\times5.9963=6.0190\)

    第四个描绘点:\(r\times6.13+(1-r)\times6.1090=6.0412\)


    8. T方控制图

    数据1、数据2:

    子组ID \(\overline{x}_1\)​(数据1)​ \(\overline{x}_2\)​(数据2)​​​ \(s_{11}\) \(s_{12}\) \(s_{22}\) 统计量 \(T_i^2\)
    1 600.36 599.52 2.548 -0.634 0.732 0.281
    2 599.76 599.2 1.188 -0.500 0.500 2.283
    3 600.44 599.36 2.608 0.422 0.188 0.919
    4 599.4 599.56 1.160 0.020 0.388 1.505
    5 600.88 599.2 1.152 0.180 0.180 3.734
    6 600.32 599.8 2.492 -0.150 0.260 1.238
    7 599.8 599.32 1.880 0.440 1.012 1.104
    8 598.24 600.12 0.128 0.074 0.552 15.115
    9 599.32 599.84 2.192 -0.036 0.108 2.961
    10 599.68 599.64 1.252 -0.474 0.328 0.605
    11 599.52 599. 1.492 -0.630 0.500 5.907
    12 599.32 600.24 2.192 0.484 0.208 8.639
    13 599.52 599.08 0.812 -0.282 0.212 4.623
    14 600.2 599.2 2.340 -0.240 0.260 1.852
    15 601.36 599.68 0.088 0.064 0.132 5.993
    16 600.6 599.4 1.060 0.050 0.280 1.185
    17 601.12 600.12 0.012 0.002 0.432 9.281
    18 599.84 599.6 2.028 0.130 0.100 0.209
    19 600.76 599.6 2.128 0.160 0.140 1.662
    20 601 599.48 1.300 -0.110 0.092 2.886
    均值 \(\overline{\overline{x}}_1\)=600.072 \(\overline{\overline{x}}_2\)=599.548​ \(\overline{\overline{s}}_{11}\)=1.5026 \(\overline{\overline{s}}_{12}\)= -0.0515 \(\overline{\overline{s}}_{22}\)=0.3302

    ① 样本均值的均值:

    \(\overline{\overline{x}}=(\overline{\overline{x}}_1,\ \overline{\overline{x}}_2)'=(600.072,\ 599.548)'\)


    ② 样本协方差:\(m=20, n=5\)

    \(\begin{aligned} & x=[601.4,601.6,598.0,601.4,599.4] \\ & y=[598.0,599.8,600.0,599.8,600.0] \\ & \overline{x}=600.36 \\ & \overline{y}=599.52 \\ \end{aligned}\)

    \(\begin{aligned} s_{11} & =\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2 \\ & =\frac{1}{n-1}[(601.4-600.36)^2+(601.6-600.36)^2+(598-600.36)^2+(601.4-600.36)^2+(599.4-600.36)^2] \\ & =2.548 \\ \end{aligned}\)

    \(\begin{aligned} s_{12} & = \frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}) \\ & = \frac{1}{n-1}[(601.4-600.36)(598-599.52)+(601.6-600.36)(599.8-599.52)+(598-600.36)(600-599.52)+(601.4-600.36)(599.8-599.52)+(599.4-600.36)(600-599.52)] \\ & = -0.634 \end{aligned}\)

    \(s_1= \begin{bmatrix} s_{11} & s_{12}\\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} 2.548 & -0.634\\ -0.634 & 0.732 \end{bmatrix}\)


    ③ 样本协方差矩阵均值:\(m\)​​ 个矩阵对应位置的均值。

    \(\bar{S} = \begin{bmatrix} \bar{s}_{11} & \bar{s}_{12}\\ \bar{s}_{21} & \bar{s}_{22} \end{bmatrix} =\begin{bmatrix} 1.5026 & -0.0515\\ -0.0515 & 0.3302 \end{bmatrix}\)


    ④ 样本的统计量 \(T_i^2\)

    \(\bar{S}^{-1}=\begin{bmatrix} 0.66908978 & 0.10435531\\ 0.10435531 & 3.04474348 \end{bmatrix}\)

    \(\begin{aligned} T_i^2 & = n(\bar{x}-\bar{\bar{x}})'\bar{S}^{-1}(\bar{x}^T-\bar{\bar{x}}) \\ & = 5* \begin{bmatrix} 600.36-600.072 & 599.52-599.548 \end{bmatrix}* \bar{S}^{-1}* \begin{bmatrix} 600.36-600.072 & 599.52-599.548 \end{bmatrix} \\ & = 5* \begin{bmatrix} 0.288 & -0.028 \end{bmatrix}* \bar{S}^{-1}* \begin{bmatrix} 0.288 \\ -0.028 \end{bmatrix} \\ & = 0.281 \end{aligned}\)


    数据5:

    子组ID \(x_1\) \(x_2\) \(x_3\) 统计量 \(T_i^2\)
    1 1.504 4.075 1.971 3.6011
    2 1.685 4.599 2.26 1.3041
    3 1.529 4.1 1.994 2.4936
    4 1.554 4.19 2.024 1.9272
    5 1.604 4.275 2.063 0.9898
    6 1.664 4.341 2.12 0.8281
    7 1.789 4.981 2.287 2.1348
    8 1.723 4.416 2.166 2.2673
    9 1.831 5.196 2.285 7.3106
    10 1.622 4.353 2.135 0.3211
    11 1.683 4.396 2.154 0.7400
    12 1.598 4.329 2.18 2.1391
    13 1.847 5.168 2.331 4.0995
    14 1.793 4.547 2.184 4.9793
    15 1.886 5.259 2.389 4.3210
    16 1.631 4.338 2.073 1.1237
    17 1.543 4.204 2.151 4.0627
    18 1.665 4.48 2.282 4.3832
    19 1.578 4.349 2.128 1.5162
    20 1.533 4.28 2.039 3.6714
    21 1.674 4.504 2.192 0.0990
    22 1.749 4.371 2.155 5.3129
    23 1.83 5.094 2.436 4.4348
    24 1.813 4.989 2.428 4.8074
    25 1.73 4.396 2.16 3.1322
    \(\bar{x}_1\)=1.6823 \(\bar{x}_2\)=4.5292 \(\bar{x}_3\)=2.1835

    ① 样本均值:
    \(\bar{x}=(\bar{x}_1,\ \bar{x}_2,\ \bar{x}_3)'=(1.6823,\ 4.5292,\ 2.1835)'\)

    ② 样本协方差矩阵:

    \(\begin{aligned} & x_1=[1.504,1.685,...,1.813,1.73] \\ & x_2=[4.075,4.599,...,4.989,4.396] \\ & x_2=[1.971,2.26,...,2.428,2.16] \\ & \overline{x}_1=1.6823 \\ & \overline{x}_2=4.5292 \\ & \overline{x}_3=2.1835 \\ \end{aligned}\)

    \(\begin{aligned} s_{11} & =\frac{1}{m-1}\sum_{i=1}^m(x_{1i}-\bar{x}_1)^2 \\ & =\frac{1}{m-1}[(1.504-1.6823)^2+(1.685-1.6823)^2+...+(1.813-1.6823)^2+(1.73-1.6823)^2] \\ & =0.0128 \\ \end{aligned}\)

    \(\begin{aligned} s_{12} & =\frac{1}{m-1}\sum_{i=1}^m(x_{1i}-\bar{x}_1)(x_{2i}-\bar{x}_2) \\ & =\frac{1}{m-1}[(1.504-1.6823)(4.075-4.5292)+(1.685-1.6823)(4.599-4.5292)+...+(1.73-1.6823)(4.396-4.5292)] \\ & =0.0366 \\ \end{aligned}\)

    \(S= \begin{bmatrix} s_{11} & s_{12} & s_{13}\\ s_{21} & s_{22} & s_{23}\\ s_{31} & s_{32} & s_{33}\\ \end{bmatrix}= \begin{bmatrix} 0.0128 & 0.0366 & 0.0123\\ 0.0366 & 0.1298 & 0.0412\\ 0.0123 & 0.0412 & 0.0163\\ \end{bmatrix}\)


    ③ 样本的统计量 \(T_i^2\)

    \(\begin{aligned} T_1^2 & =(x_1-\bar{x})'S^{-1}(x_1-\bar{x}) \\ & = \begin{bmatrix} 1.504-1.6823 & 4.075-4.5292 & 1.971-2.1835 \end{bmatrix} *S^{-1} * \begin{bmatrix} 1.504-1.6823 \\ 4.075-4.5292 \\ 1.971-2.1835 \end{bmatrix} \\ & = \begin{bmatrix} -0.1783 & -0.4542 & -0.2125 \end{bmatrix} *S^{-1} * \begin{bmatrix} -0.1783 \\ -0.4542 \\ -0.2125 \end{bmatrix} \\ &=3.6011 \end{aligned}\)

  • 相关阅读:
    $resource详解
    大白话讲解Promise(一)
    《AngularJS》5个实例详解Directive(指令)机制
    Openstack实现共有云VPC的SDN网络
    Openstack实现共有云多flat网络
    Openstack使用NFS作为后端存储
    Openstack块存储cinder安装配置
    Openstack创建镜像
    Openstack深入了解虚拟机
    Python全栈day26-27(面向对象进阶)
  • 原文地址:https://www.cnblogs.com/keye/p/15849470.html
Copyright © 2020-2023  润新知