欧拉函数
欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。
通式:φ(x)=x*(1-1/p1)(1-1/p2)(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。
对于质数p,φ(p) = p - 1。注意φ(1)=1.
欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
特殊性质:当n为奇数时,φ(2n)=φ(n)
欧拉函数还有这样的性质:
设a为N的质因数,
若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;
若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。
欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod=1e9+7;
LL eluer(LL n)
{
LL res=n,a=n;
for(LL i=2;i*i<=a;i++)
{
if(a%i==0)
{
res=res/i*(i-1);
while(a%i==0)
a/=i;
}
}
if(a>1) res=res/a*(a-1);
return res;
}
int main()
{
LL n,ans;
while(~scanf("%lld",&n)&&n)
{
ans=n*(n+1)/2-n;
ans=(ans-eluer(n)*n/2)%mod;
printf("%lld
",ans);
}
return 0;
}