• Leetcode 319.灯泡开关


    灯泡开关

    初始时有 个灯泡关闭。 1 轮,你打开所有的灯泡。 2 轮,每两个灯泡你关闭一次。 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。第 i 轮,每 个灯泡切换一次开关。对于第 轮,你只切换最后一个灯泡的开关。找出 轮后有多少个亮着的灯泡。

    示例:

    输入: 3

    输出: 1

    解释:

    初始时, 灯泡状态 [关闭, 关闭, 关闭].

    第一轮后, 灯泡状态 [开启, 开启, 开启].

    第二轮后, 灯泡状态 [开启, 关闭, 开启].

    第三轮后, 灯泡状态 [开启, 关闭, 关闭].

     

    你应该返回 1,因为只有一个灯泡还亮着。

    A bulb ends up on iff it is switched an odd number of times.

    Bulb i is switched in round d iff d divides i. So bulb i ends up on iff it has an odd number of >divisors.

    Divisors come in pairs, like i=12 has divisors 1 and 12, 2 and 6, and 3 and 4. Except if i is a >square, like 36 has divisors 1 and 36, 2 and 18, 3 and 12, 4 and 9, and double divisor 6. So bulb >i ends up on iff and only if i is a square.

    So just count the square numbers.

    大概解释一下,当一个灯泡被执行偶数次switch操作时它是关着的,当被执行奇数次switch操作时它是开着的,那么这题就是要找出哪些编号的灯泡会被执行奇数次操作。

    现在假如我们执行第i

    次操作,即从编号i开始对编号每次+i进行switch操作,对于这些灯来说,

    如果其编号j(j=1,2,3,,n)能够整除i,则编号j的灯需要执switch操作。

    具备这样性质的i是成对出现的,比如:

    j=12时,编号为12的灯,在第1次,第12次;第2次,第6次;第3次,第4次一定会被执行Switch操作,这样的话,编号为12的等肯定为灭。

    但是当完全平方数36就不一样了,因为他有一个特殊的因数6,这样当i=6时,只能被执行一次Switch操作,这样推出,完全平方数一定是亮着的,所以本题的关键在于找完全平方数的个数。

    1 class Solution {
    2     public int bulbSwitch(int n) {
    3         return (int) Math.sqrt(n);
    4     }
    5 }


  • 相关阅读:
    卫星时间同步装置的安装及售后
    windowsU盘重装系统:操作流程
    vue安装正确流程
    win10以太网未识别的网络
    [UnityShader]unity中2D Sprite显示阴影和接受阴影
    [UnityShader]说厌了的遮挡显示
    [Unity]利用Mesh绘制简单的可被遮挡,可以探测的攻击指示器
    ConcurrentHashMap源码解读
    Vector底层原理
    LinkedList集合底层原理
  • 原文地址:https://www.cnblogs.com/kexinxin/p/10235195.html
Copyright © 2020-2023  润新知