• POJ-2992 Divisors(数学知识)


    Divisors
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 12085   Accepted: 3600

    Description

    Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation?

    Input

    The input consists of several instances. Each instance consists of a single line containing two integers n and k (0 ≤ k ≤ n ≤ 431), separated by a single space.

    Output

    For each instance, output a line containing exactly one integer -- the number of distinct divisors of Cnk. For the input instances, this number does not exceed 263 - 1.

    Sample Input

    5 1
    6 3
    10 4

    Sample Output

    2
    6
    16

    Source

    求一个数的因子个数 可以将它分解质因数分成若干个质数的幂的积,设他们的指数为a1,a2,a3……an 则这个数的因子个数为(a1+1)*(a2+1)*(a3+1)*……*(an+1)  当求a!中出现的多少个p的时候 a!可以表示成1*2*3*……*(p-1)*p*(p+1)*……*(2*p-1)*(2*p)*(2*p+1)*……其中p, 2*p , 3*p……会有因子p所以先加上a/p 但是p², 2*p²……这些数中有两个p    类似的p³ , 2*p³ , 3*p³ ……会有三个p  所以在处理的时候要考虑全 具体看代码
     1 #include "bits/stdc++.h"
     2 using namespace std;
     3 typedef long long LL;
     4 const int MAX=435;
     5 int n,m,len,pri[MAX];LL ans[MAX][MAX];
     6 bool t[MAX];
     7 void prime(){
     8     register int i,j;
     9     memset(t,true,sizeof(t));
    10     for (i=2;i<MAX;i++){
    11         if (t[i]) pri[++len]=i;
    12         for (j=1;j<=len && pri[j]*i<MAX;j++) {t[pri[j]*i]=false; if (i%pri[j]==0) break;}
    13     }
    14 }
    15 inline int calc(register int x,register int y){
    16     register int an=0;
    17     while (x){an+=x/y;x/=y;}
    18     return an;
    19 }
    20 int main(){
    21     freopen ("divisors.in","r",stdin);freopen ("divisors.out","w",stdout);
    22     register int i,j,k;
    23     prime();ans[0][0]=1;
    24     for (i=1;i<MAX;i++){
    25         ans[i][i]=ans[i][0]=1;
    26         for (j=1;j<i;j++){
    27             ans[i][j]=1;
    28             for (k=1;k<=len;k++)
    29                 ans[i][j]*=calc(i,pri[k])-calc(j,pri[k])-calc(i-j,pri[k])+1;
    30         }
    31     }
    32     while (~scanf("%d%d",&n,&m)) printf("%lld
    ",ans[n][m]);
    33     return 0;
    34 }
  • 相关阅读:
    MyBatis常见面试题以及解读
    如何防止sql注入攻击
    宝塔Linux面板基础命令
    Centos7配置静态ip
    宝塔Linux面板安装
    idea中安装阿里巴巴的代码规范插件
    idea中快速将类中的属性转为Json字符串的插件
    创建线程的四种方式
    sleep()方法与wait()方法的区别
    解决线程安全的几种方式
  • 原文地址:https://www.cnblogs.com/keximeiruguo/p/7811308.html
Copyright © 2020-2023  润新知