Primitive Roots
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 3984 | Accepted: 2373 |
Description
We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.
Output
For each p, print a single number that gives the number of primitive roots in a single line.
Sample Input
23 31 79
Sample Output
10 8 24
Source
直接看了题解,求φ(n-1)
1 #include <cstdio> 2 #include <cmath> 3 #include <cstring> 4 #include <cstdlib> 5 #include <queue> 6 #include <stack> 7 #include <vector> 8 #include <iostream> 9 #include "algorithm" 10 using namespace std; 11 typedef long long LL; 12 const int MAX=65540; 13 int n; 14 int phi[MAX]; 15 void euler(){ 16 int i,j; 17 for (i=1;i<MAX;i++) phi[i]=i; 18 for (i=2;i<MAX;i+=2) phi[i]/=2; 19 for (i=3;i<MAX;i+=2) 20 if (phi[i]==i) 21 for (j=i;j<MAX;j+=i) 22 phi[j]=phi[j]/i*(i-1); 23 } 24 int main(){ 25 freopen ("roots.in","r",stdin); 26 freopen ("roots.out","w",stdout); 27 euler();int i,j; 28 while (~scanf("%d",&n)){ 29 printf("%d ",phi[n-1]); 30 } 31 return 0; 32 }