• Apache Spark-1.0.0浅析(七):资源调度——结果返回


    对于ResultTask,直接执行func操作,最后告知任务是否执行完成;而对于ShuffleMapTask,则需要将中间结果存储到实例化DirectTaskResult,以备下一个task使用,同时还要返回实例化的MapStatus。

    Executor.run中,当Task执行完毕调用execBackend.statusUpdate,在CoarseGrainedExecutorBackend继承了ExecutorBackend,重新定义statusUpdate,向driver发送StatusUpdate消息

    override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
        driver ! StatusUpdate(executorId, taskId, state, data)
      }
    }

    CoaseGrainedSchedulerBackend中定义的driverActor接收,首先执行scheduler.statusUpdate,更新状态,释放资源

    case StatusUpdate(executorId, taskId, state, data) =>
            scheduler.statusUpdate(taskId, state, data.value)
            if (TaskState.isFinished(state)) {
              if (executorActor.contains(executorId)) {
                freeCores(executorId) += scheduler.CPUS_PER_TASK
                makeOffers(executorId)
              } else {
                // Ignoring the update since we don't know about the executor.
                val msg = "Ignored task status update (%d state %s) from unknown executor %s with ID %s"
                logWarning(msg.format(taskId, state, sender, executorId))
              }
            }

    scheduler.statusUpdate主要移除当前完成的task,同时更新taskSets

    def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
        var failedExecutor: Option[String] = None
        synchronized {
          try {
            if (state == TaskState.LOST && taskIdToExecutorId.contains(tid)) {
              // We lost this entire executor, so remember that it's gone
              val execId = taskIdToExecutorId(tid)
              if (activeExecutorIds.contains(execId)) {
                removeExecutor(execId)
                failedExecutor = Some(execId)
              }
            }
            taskIdToTaskSetId.get(tid) match {
              case Some(taskSetId) =>
                if (TaskState.isFinished(state)) {
                  taskIdToTaskSetId.remove(tid)
                  taskIdToExecutorId.remove(tid)
                }
                activeTaskSets.get(taskSetId).foreach { taskSet =>
                  if (state == TaskState.FINISHED) {
                    taskSet.removeRunningTask(tid)
                    taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
                  } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
                    taskSet.removeRunningTask(tid)
                    taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
                  }
                }
              case None =>
                logError(
                  ("Ignoring update with state %s for TID %s because its task set is gone (this is " +
                   "likely the result of receiving duplicate task finished status updates)")
                  .format(state, tid))
            }
          } catch {
            case e: Exception => logError("Exception in statusUpdate", e)
          }
        }
        // Update the DAGScheduler without holding a lock on this, since that can deadlock
        if (failedExecutor.isDefined) {
          dagScheduler.executorLost(failedExecutor.get)
          backend.reviveOffers()
        }
      }

    其中,主要语句是taskResultGetter.enqueueSuccessfulTask,首先获得反序列化的结果数据,分为直接结果或非直接结果处理,最后执行scheduler.handleSuccessfulTask

    def enqueueSuccessfulTask(
        taskSetManager: TaskSetManager, tid: Long, serializedData: ByteBuffer) {
        getTaskResultExecutor.execute(new Runnable {
          override def run(): Unit = Utils.logUncaughtExceptions {
            try {
              val result = serializer.get().deserialize[TaskResult[_]](serializedData) match {
                case directResult: DirectTaskResult[_] => directResult
                case IndirectTaskResult(blockId) =>
                  logDebug("Fetching indirect task result for TID %s".format(tid))
                  scheduler.handleTaskGettingResult(taskSetManager, tid)
                  val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)
                  if (!serializedTaskResult.isDefined) {
                    /* We won't be able to get the task result if the machine that ran the task failed
                     * between when the task ended and when we tried to fetch the result, or if the
                     * block manager had to flush the result. */
                    scheduler.handleFailedTask(
                      taskSetManager, tid, TaskState.FINISHED, TaskResultLost)
                    return
                  }
                  val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
                    serializedTaskResult.get)
                  sparkEnv.blockManager.master.removeBlock(blockId)
                  deserializedResult
              }
              result.metrics.resultSize = serializedData.limit()
              scheduler.handleSuccessfulTask(taskSetManager, tid, result)
            } catch {
              case cnf: ClassNotFoundException =>
                val loader = Thread.currentThread.getContextClassLoader
                taskSetManager.abort("ClassNotFound with classloader: " + loader)
              case ex: Exception =>
                taskSetManager.abort("Exception while deserializing and fetching task: %s".format(ex))
            }
          }
        })
      }
    scheduler.handleSuccessfulTask在TaskSchedulerImpl中定义如下,仅调用taskSetManager.handleSuccessfulTask
    def handleSuccessfulTask(
        taskSetManager: TaskSetManager,
        tid: Long,
        taskResult: DirectTaskResult[_]) = synchronized {
        taskSetManager.handleSuccessfulTask(tid, taskResult)
      }

    taskSetManager.handleSuccessfulTask,将task标记为successful,从RunningTask中移除,然后调用sched.dagScheduler.taskEnded

    /**
       * Marks the task as successful and notifies the DAGScheduler that a task has ended.
       */
      def handleSuccessfulTask(tid: Long, result: DirectTaskResult[_]) = {
        val info = taskInfos(tid)
        val index = info.index
        info.markSuccessful()
        removeRunningTask(tid)
        sched.dagScheduler.taskEnded(
          tasks(index), Success, result.value, result.accumUpdates, info, result.metrics)
        if (!successful(index)) {
          tasksSuccessful += 1
          logInfo("Finished TID %s in %d ms on %s (progress: %d/%d)".format(
            tid, info.duration, info.host, tasksSuccessful, numTasks))
          // Mark successful and stop if all the tasks have succeeded.
          successful(index) = true
          if (tasksSuccessful == numTasks) {
            isZombie = true
          }
        } else {
          logInfo("Ignorning task-finished event for TID " + tid + " because task " +
            index + " has already completed successfully")
        }
        failedExecutors.remove(index)
        maybeFinishTaskSet()
      }

    sched.dagScheduler,taskEnded向eventProcessActor发送CompletionEvent消息

    // Called by TaskScheduler to report task completions or failures.
      def taskEnded(
          task: Task[_],
          reason: TaskEndReason,
          result: Any,
          accumUpdates: Map[Long, Any],
          taskInfo: TaskInfo,
          taskMetrics: TaskMetrics) {
        eventProcessActor ! CompletionEvent(task, reason, result, accumUpdates, taskInfo, taskMetrics)

    DAGScheduler中定义接收响应,调用dagScheduler.handleTaskCompletion

    case completion @ CompletionEvent(task, reason, _, _, taskInfo, taskMetrics) =>
          dagScheduler.handleTaskCompletion(completion)

    dagScheduler.handleTaskCompletion,如果是ResultTask,首先向listenerBus发送SparkListenerTaskEnd,获得task对应的stage,定义了一个本地方法markStageAsFinished,后续调用,判断事件类型,包含Success、Resubmitted、FetchFailed、ExceptionFailure、TaskResultLost等,最后submitWaitingStages()提交等待(依赖)的stages。

    如果是Success事件,则进一步判断task是ResultTask或者ShuffleMapTask,如果是ResultTask,将task所属stage中的该部output标记为已完成,最后调用job.listener.taskSucceeded,如果整个stage完成,则标记markStageAsFinished,向listenerBus发送SparkListenerJobEnd。

    若是ShuffleMapTask,记录task在executor完成,addOutputLoc添加Shuffle output location,markStageAsFinished,判断如果该stage是runningStages且该stage挂起的tasks为空,主要动作是getMissingParentStages获得依赖waitingStages,最后submitMissingTasks提交依赖tasks

    /**
       * Responds to a task finishing. This is called inside the event loop so it assumes that it can
       * modify the scheduler's internal state. Use taskEnded() to post a task end event from outside.
       */
      private[scheduler] def handleTaskCompletion(event: CompletionEvent) {
        val task = event.task
        val stageId = task.stageId
        val taskType = Utils.getFormattedClassName(task)
        listenerBus.post(SparkListenerTaskEnd(stageId, taskType, event.reason, event.taskInfo,
          event.taskMetrics))
        if (!stageIdToStage.contains(task.stageId)) {
          // Skip all the actions if the stage has been cancelled.
          return
        }
        val stage = stageIdToStage(task.stageId)
    
        def markStageAsFinished(stage: Stage) = {
          val serviceTime = stageToInfos(stage).submissionTime match {
            case Some(t) => "%.03f".format((System.currentTimeMillis() - t) / 1000.0)
            case _ => "Unknown"
          }
          logInfo("%s (%s) finished in %s s".format(stage, stage.name, serviceTime))
          stageToInfos(stage).completionTime = Some(System.currentTimeMillis())
          listenerBus.post(SparkListenerStageCompleted(stageToInfos(stage)))
          runningStages -= stage
        }
        event.reason match {
          case Success =>
            logInfo("Completed " + task)
            if (event.accumUpdates != null) {
              Accumulators.add(event.accumUpdates) // TODO: do this only if task wasn't resubmitted
            }
            pendingTasks(stage) -= task
            task match {
              case rt: ResultTask[_, _] =>
                resultStageToJob.get(stage) match {
                  case Some(job) =>
                    if (!job.finished(rt.outputId)) {
                      job.finished(rt.outputId) = true
                      job.numFinished += 1
                      // If the whole job has finished, remove it
                      if (job.numFinished == job.numPartitions) {
                        markStageAsFinished(stage)
                        cleanupStateForJobAndIndependentStages(job, Some(stage))
                        listenerBus.post(SparkListenerJobEnd(job.jobId, JobSucceeded))
                      }
                      job.listener.taskSucceeded(rt.outputId, event.result)
                    }
                  case None =>
                    logInfo("Ignoring result from " + rt + " because its job has finished")
                }
    
              case smt: ShuffleMapTask =>
                val status = event.result.asInstanceOf[MapStatus]
                val execId = status.location.executorId
                logDebug("ShuffleMapTask finished on " + execId)
                if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
                  logInfo("Ignoring possibly bogus ShuffleMapTask completion from " + execId)
                } else {
                  stage.addOutputLoc(smt.partitionId, status)
                }
                if (runningStages.contains(stage) && pendingTasks(stage).isEmpty) {
                  markStageAsFinished(stage)
                  logInfo("looking for newly runnable stages")
                  logInfo("running: " + runningStages)
                  logInfo("waiting: " + waitingStages)
                  logInfo("failed: " + failedStages)
                  if (stage.shuffleDep.isDefined) {
                    // We supply true to increment the epoch number here in case this is a
                    // recomputation of the map outputs. In that case, some nodes may have cached
                    // locations with holes (from when we detected the error) and will need the
                    // epoch incremented to refetch them.
                    // TODO: Only increment the epoch number if this is not the first time
                    //       we registered these map outputs.
                    mapOutputTracker.registerMapOutputs(
                      stage.shuffleDep.get.shuffleId,
                      stage.outputLocs.map(list => if (list.isEmpty) null else list.head).toArray,
                      changeEpoch = true)
                  }
                  clearCacheLocs()
                  if (stage.outputLocs.exists(_ == Nil)) {
                    // Some tasks had failed; let's resubmit this stage
                    // TODO: Lower-level scheduler should also deal with this
                    logInfo("Resubmitting " + stage + " (" + stage.name +
                      ") because some of its tasks had failed: " +
                      stage.outputLocs.zipWithIndex.filter(_._1 == Nil).map(_._2).mkString(", "))
                    submitStage(stage)
                  } else {
                    val newlyRunnable = new ArrayBuffer[Stage]
                    for (stage <- waitingStages) {
                      logInfo("Missing parents for " + stage + ": " + getMissingParentStages(stage))
                    }
                    for (stage <- waitingStages if getMissingParentStages(stage) == Nil) {
                      newlyRunnable += stage
                    }
                    waitingStages --= newlyRunnable
                    runningStages ++= newlyRunnable
                    for {
                      stage <- newlyRunnable.sortBy(_.id)
                      jobId <- activeJobForStage(stage)
                    } {
                      logInfo("Submitting " + stage + " (" + stage.rdd + "), which is now runnable")
                      submitMissingTasks(stage, jobId)
                    }
                  }
                }
              }
    
          case Resubmitted =>
            logInfo("Resubmitted " + task + ", so marking it as still running")
            pendingTasks(stage) += task
    
          case FetchFailed(bmAddress, shuffleId, mapId, reduceId) =>
            // Mark the stage that the reducer was in as unrunnable
            val failedStage = stageIdToStage(task.stageId)
            runningStages -= failedStage
            // TODO: Cancel running tasks in the stage
            logInfo("Marking " + failedStage + " (" + failedStage.name +
              ") for resubmision due to a fetch failure")
            // Mark the map whose fetch failed as broken in the map stage
            val mapStage = shuffleToMapStage(shuffleId)
            if (mapId != -1) {
              mapStage.removeOutputLoc(mapId, bmAddress)
              mapOutputTracker.unregisterMapOutput(shuffleId, mapId, bmAddress)
            }
            logInfo("The failed fetch was from " + mapStage + " (" + mapStage.name +
              "); marking it for resubmission")
            if (failedStages.isEmpty && eventProcessActor != null) {
              // Don't schedule an event to resubmit failed stages if failed isn't empty, because
              // in that case the event will already have been scheduled. eventProcessActor may be
              // null during unit tests.
              import env.actorSystem.dispatcher
              env.actorSystem.scheduler.scheduleOnce(
                RESUBMIT_TIMEOUT, eventProcessActor, ResubmitFailedStages)
            }
            failedStages += failedStage
            failedStages += mapStage
            // TODO: mark the executor as failed only if there were lots of fetch failures on it
            if (bmAddress != null) {
              handleExecutorLost(bmAddress.executorId, Some(task.epoch))
            }
    
          case ExceptionFailure(className, description, stackTrace, metrics) =>
            // Do nothing here, left up to the TaskScheduler to decide how to handle user failures
    
          case TaskResultLost =>
            // Do nothing here; the TaskScheduler handles these failures and resubmits the task.
    
          case other =>
            // Unrecognized failure - also do nothing. If the task fails repeatedly, the TaskScheduler
            // will abort the job.
        }
        submitWaitingStages()
      }

    ResultTask执行成功调用的job.listener.taskSucceeded,JobWaiter继承了JobListener,重新定义了taskSucceeded,判断如果已完成的task数量和总共task数量相等,则意味着job完成,向所有listener发送JobSucceeded消息

    override def taskSucceeded(index: Int, result: Any): Unit = synchronized {
        if (_jobFinished) {
          throw new UnsupportedOperationException("taskSucceeded() called on a finished JobWaiter")
        }
        resultHandler(index, result.asInstanceOf[T])
        finishedTasks += 1
        if (finishedTasks == totalTasks) {
          _jobFinished = true
          jobResult = JobSucceeded
          this.notifyAll()
        }
      }

    接DAGScheduler.runJob,waiter等待接受消息JobSucceeded消息,整个job执行完毕

    def runJob[T, U: ClassTag](
          rdd: RDD[T],
          func: (TaskContext, Iterator[T]) => U,
          partitions: Seq[Int],
          callSite: String,
          allowLocal: Boolean,
          resultHandler: (Int, U) => Unit,
          properties: Properties = null)
      {
        val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)
        waiter.awaitResult() match {
          case JobSucceeded => {}
          case JobFailed(exception: Exception) =>
            logInfo("Failed to run " + callSite)
            throw exception
        }
      }

    END

  • 相关阅读:
    感觉这周的每日都是累
    昨天是弄了一下这个把国境点以外的航路截断
    现在硬盘有点运行不快了,想换个硬盘
    昨天晚上本来想早睡的,可是彭突然有工作上的问题然后我就一直在远程
    昨天晚上接到知本时代电话较为多,前面还好是从10点开始
    python 绘制折线图
    Numpy中Meshgrid函数介绍及2种应用场景 (转)
    np.around() Numpy 数组,DataFrame 四舍五入的利器
    Numpy 数据的元素级逻辑运算 np.logical_and、np.logical_or、np.logical_not
    Numpy 中的 ravel() 和 flatten()
  • 原文地址:https://www.cnblogs.com/kevingu/p/4678828.html
Copyright © 2020-2023  润新知