Problem Description
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- string "13" and can be divided by 13. For example, 130 and 2613 are wqb-numbers, but 143 and 2639 are not. Your task is to calculate how many wqb-numbers from 1 to n for a given integer n.
Input
Process till EOF. In each line, there is one positive integer n(1 <= n <= 1000000000).
Output
Print each answer in a single line.
Sample Input
13 100 200 1000
Sample Output
1 1 2 2
Solution
学了用记忆化搜索解数位dp题,很直观
状态为f[position][modnum][13?][limited],也就是当前到了数字第几位,模数为多少,是否已经包含了13,当前位可以填的数字是从0~9还是从0~输入的数字的当前位
#include <stdio.h> #include <memory.h> int n,len,a[11],f[11][14][3]; int dfs(int x,int md,int cov,bool lim) { if(!x) return !md && cov==2; if(!lim && ~f[x][md][cov]) return f[x][md][cov]; int res=0,num=lim?a[x]:9,modo,cav; for(int i=0; i<=num; i++) { modo=(md*10+i)%13; cav=cov; if(!cov && i==1) cav=1; if(cov==1 && i^1) cav=i==3?2:0; res+=dfs(x-1,modo,cav,lim && i==num); } if(!lim)f[x][md][cov]=res; return res; } int main() { while(~scanf("%d",&n)) { memset(f,-1,sizeof f); for(len=0; n; n/=10) a[++len]=n%10; printf("%d ",dfs(len,0,0,true)); } return 0; }