题意:
给定一张无向图,求至少需要添加几条边才能保证任意 2 点之间至少有 2 条不同的路径。
思路:
1. 先把能构成双连通分量的环缩成一个点,缩点之后的图基本上就是一个树形的了;
2. 找到度为 1 的叶子节点个数 leaf,则输出的结果便是 (leaf + 1)/ 2。
3. 这一题和 POJ 3352 是一样的。只不过构图的时候要考虑重边问题,多加了一个判断。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int MAXN = 5010;
vector<int> G[MAXN];
int low[MAXN], deg[MAXN], cflag;
bool vis[MAXN];
void BCC(int u, int f) {
low[u] = ++cflag;
vis[u] = true;
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (v == f) continue;
if (!vis[v]) BCC(v, u);
low[u] = min(low[u], low[v]);
}
}
bool judge(int u, int v) {
for (int i = 0; i < G[u].size(); i++)
if (G[u][i] == v) return false;
return true;
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 0; i <= n; i++) {
G[i].clear();
vis[i] = false;
low[i] = deg[i] = 0;
}
while (m--) {
int u, v;
scanf("%d%d", &u, &v);
if (judge(u, v)) {
G[u].push_back(v);
G[v].push_back(u);
}
}
BCC(1, 0);
for (int u = 1; u <= n; u++) {
for (int i = 0; i < G[u].size(); i++) {
int v = G[u][i];
if (low[u] != low[v])
deg[low[u]] += 1;
}
}
int leaf = 0;
for (int i = 1; i <= n; i++)
if (deg[i] == 1) leaf += 1;
printf("%d\n", (leaf+1)/2);
return 0;
}