题意:
求无向图中生成树的最长边和最短边之差的最小值。
思路:
1. 首先要想办法求出所有的生成树,然后才能求之差的最小值
2. 利用 kruskal 算法,把边从小到大排序,然后我们从小边 i 开始,枚举由边集 i~m 所能生成的树
3. 输出每棵树长边与短边之差的最小值即可。
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int MAXN = 110;
const int INFS = 0x3FFFFFFF;
struct edge {
int u, v, w;
edge(int _u, int _v, int _w) : u(_u), v(_v), w(_w) {}
bool operator < (const edge& o) { return w < o.w; }
};
vector<edge> edges;
int f[MAXN];
int find(int x) {
int r = x;
while (r != f[r])
r = f[r];
while (x != r) {
int t = f[x];
f[x] = r, x = t;
}
return r;
}
void merge(int a, int b) { f[a] = b; }
int kruskal(int n) {
int ans = INFS;
for (int i = 0; i < edges.size(); i++) {
if (i + n - 1 > edges.size())
break;
for (int k = 1; k <= n; k++)
f[k] = k;
int cflag = 0;
for (int j = i; j < edges.size(); j++) {
int ru = find(edges[j].u);
int rv = find(edges[j].v);
if (ru == rv) continue;
merge(ru, rv);
cflag += 1;
if (cflag == n - 1) {
ans = min(ans, edges[j].w - edges[i].w);
break;
}
}
}
return ans == INFS ? -1 : ans;
}
int main() {
int n, m;
while (scanf("%d%d", &n, &m) && (n || m)) {
edges.clear();
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
edges.push_back(edge(a, b, c));
}
sort(edges.begin(), edges.end());
printf("%d\n", kruskal(n));
}
return 0;
}