• ARMv8 Linux内核head.S源码分析


    ARMv8Linux内核head.S主要工作内容:

    1、 从el2特权级退回到el1

    2、 确认处理器类型

    3、 计算内核镜像的起始物理地址及物理地址与虚拟地址之间的偏移

    4、 验证设备树的地址是否有效

    5、 创建页表,用于启动内核

    6、 设置CPU(cpu_setup),用于使能MMU

    7、 使能MMU

    8、 交换数据段

    9、 跳转到start_kernel函数继续运行。

     

     

     

    /*

     *Low-level CPU initialisation

     *Based on arch/arm/kernel/head.S

     *

     *Copyright (C) 1994-2002 Russell King

     *Copyright (C) 2003-2012 ARM Ltd.

     *Authors:     Catalin Marinas<catalin.marinas@arm.com>

     *             Will Deacon<will.deacon@arm.com>

     *

     *This program is free software; you can redistribute it and/or modify

     * itunder the terms of the GNU General Public License version 2 as

     *published by the Free Software Foundation.

     *

     *This program is distributed in the hope that it will be useful,

     *but WITHOUT ANY WARRANTY; without even the implied warranty of

     *MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

     *GNU General Public License for more details.

     *

     *You should have received a copy of the GNU General Public License

     *along with this program.  If not, see<http://www.gnu.org/licenses/>.

     */

     

    #include <linux/linkage.h>

    #include <linux/init.h>

     

    #include <asm/assembler.h>

    #include <asm/ptrace.h>

    #include <asm/asm-offsets.h>

    #include <asm/memory.h>

    #include <asm/thread_info.h>

    #include <asm/pgtable-hwdef.h>

    #include <asm/pgtable.h>

    #include <asm/page.h>

     

    /*

     *swapper_pg_dir is the virtual address of the initial page table. We place

     *the page tables 3 * PAGE_SIZE below KERNEL_RAM_VADDR. The idmap_pg_dir has

     * 2pages and is placed below swapper_pg_dir.

     */

    #define KERNEL_RAM_VADDR      (PAGE_OFFSET + TEXT_OFFSET)

     

    #if (KERNEL_RAM_VADDR & 0xfffff) !=0x80000

    #error KERNEL_RAM_VADDR must start at0xXXX80000

    #endif

     

    #define SWAPPER_DIR_SIZE  (3 * PAGE_SIZE)

    #define IDMAP_DIR_SIZE                (2 * PAGE_SIZE)

     

             .globl       swapper_pg_dir

             .equ swapper_pg_dir, KERNEL_RAM_VADDR -SWAPPER_DIR_SIZE

     

             .globl       idmap_pg_dir

             .equ idmap_pg_dir, swapper_pg_dir - IDMAP_DIR_SIZE

     

             .macro     pgtbl, ttb0, ttb1, phys

             add  tb1, phys, #TEXT_OFFSET - SWAPPER_DIR_SIZE

             sub   tb0, tb1, #IDMAP_DIR_SIZE

             .endm

     

    #ifdef CONFIG_ARM64_64K_PAGES

    #define BLOCK_SHIFT    PAGE_SHIFT

    #define BLOCK_SIZE       PAGE_SIZE

    #else

    #define BLOCK_SHIFT    SECTION_SHIFT

    #define BLOCK_SIZE       SECTION_SIZE

    #endif

     

    #define KERNEL_START KERNEL_RAM_VADDR

    #define KERNEL_END     _end

     

    /*

     *Initial memory map attributes.

     */

    #ifndef CONFIG_SMP

    #define PTE_FLAGS         PTE_TYPE_PAGE | PTE_AF

    #define PMD_FLAGS       PMD_TYPE_SECT | PMD_SECT_AF

    #else

    #define PTE_FLAGS         PTE_TYPE_PAGE | PTE_AF | PTE_SHARED

    #define PMD_FLAGS       PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S

    #endif

     

    #ifdef CONFIG_ARM64_64K_PAGES

    #define MM_MMUFLAGS      PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS

    #define IO_MMUFLAGS PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_XN | PTE_FLAGS

    #else

    #define MM_MMUFLAGS      PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS

    #define IO_MMUFLAGS PMD_ATTRINDX(MT_DEVICE_nGnRE) | PMD_SECT_XN | PMD_FLAGS

    #endif

     

    /*

     *Kernel startup entry point.

     *---------------------------

     *

     *The requirements are:

     *   MMU= off, D-cache = off, I-cache = on or off,

     *   x0 =physical address to the FDT blob.

     *

     *This code is mostly position independent so you call this at

     *__pa(PAGE_OFFSET + TEXT_OFFSET).

     *

     *Note that the callee-saved registers are used for storing variables

     *that are useful before the MMU is enabled. The allocations are described

     * inthe entry routines.

     */

             __HEAD                    //这是一个宏定义;#define__HEAD          .section         ".head.text","ax"; .section是伪指令ax代表允许执行

     

             /*

              * DO NOT MODIFY. Image header expected byLinux boot-loaders.

              */

             b       stext                                   //branch to kernel start, magic

             .long        0                                 //reserved

             .quad       TEXT_OFFSET                   // Image load offset from start of RAM

             .quad       0                                 //reserved

             .quad       0                                 //reserved

     

    ENTRY(stext)

             mov x21, x0                               //x21=FDT,x21中保存的是由Uboot传进来的,设备树在内存中的地址。

             bl      el2_setup                          //Drop to EL1,从当前特权级跳入EL1,具体函数内容请看下面el2_setup函数。

             mrs  x22, midr_el1                   //x22=cpuid,x22中保存着cpuid,用以判断运行当前这段代码的CPU是哪一个。

             mov x0, x22                               //x0=cpuid,用于传送参数给函数lookup_processor_type。

             bl      lookup_processor_type //查看处理器类型,见后面具体定义

             mov x23, x0                               //x23=current cpu_table       把函数lookup_processor_type返回的cpu_table地址给x23

             cbz   x23, __error_p                          // invalid processor (x23=0)?

             bl      __calc_phys_offset                 //计算起始物理地址,返回的值中x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET

             bl      __vet_fdt                                   //返回后的x21中要么是无效保存0,要么是有效地fdt地址

             bl      __create_page_tables            //为内核创建临时页表 x25=TTBR0,x26=TTBR1,本函数所建立的页表在后面paging_init会销毁重建。

             /*

              * The following calls CPU specific code in aposition independent

              * manner. See arch/arm64/mm/proc.S fordetails. x23 = base of

              * cpu_info structure selected bylookup_processor_type above.

              * On return, the CPU will be ready for the MMUto be turned on and

              * the TCR will have been set.

              */

             ldr    x27, __switch_data                 //由函数__enable_mmu中调用,此时MMU已经开启

             adr   lr, __enable_mmu           //返回“地址无关”的地址,由函数__cpu_setup返回时调用,该函数中执行brx27调用__switch_data函数

             ldr    x12, [x23,#CPU_INFO_SETUP]

             add  x12, x12, x28                    // __virt_to_phys

             br     x12                             //x12中存放的是cpu_info结构体的cpu_setup字段

                                                         //该字段在cpu_table中被初始化为__cpu_setup函数,所里这里调用cpu_setup,不在本文件中暂不分析

                                                         //该函数返回后会把lr给pc,即直接调用上面的__enable_mmu

    ENDPROC(stext)

     

    /*

     * If we're fortunate enough to boot at EL2,ensure that the world is

     * sane before dropping to EL1.

     */

    ENTRY(el2_setup)

             mrs  x0, CurrentEL                                     //获得当前特权级

             cmp x0, #PSR_MODE_EL2t                      //对比当前特权级是否为EL2

             ccmp        x0,#PSR_MODE_EL2h, #0x4, ne   //NZCV= if notequal then CMP(x0,# PSR_MODE_EL2h) else 0x4

             b.eq 1f

             ret

     

             /* Hyp configuration. */

    1:     mov x0, #(1 << 31)                   // 64-bit EL1,配置hypervisor模式控制寄存器

             msr  hcr_el2, x0

     

             /* Generic timers. */               //配置通用时钟控制寄存器,使能EL1物理时钟

             mrs  x0, cnthctl_el2

             orr   x0, x0, #3                          // Enable EL1 physicaltimers

             msr  cnthctl_el2, x0

     

             /* Populate ID registers. */            //把ID寄存器移植到相应的虚拟化id配置寄存器中

             mrs  x0, midr_el1

             mrs  x1, mpidr_el1

             msr  vpidr_el2, x0

             msr  vmpidr_el2, x1

     

             /* sctlr_el1 */                           //把0x30d00800赋值给sctlr_el1寄存器

             mov x0, #0x0800                      // Set/clear RES{1,0} bits

             movk        x0,#0x30d0, lsl #16

             msr  sctlr_el1, x0

     

             /* Coprocessor traps. */                 //关闭协处理器异常陷入到EL2

             mov x0, #0x33ff

             msr  cptr_el2, x0                      // Disable copro. traps toEL2

     

    #ifdef CONFIG_COMPAT

             msr  hstr_el2, xzr                      // Disable CP15 traps toEL2

    #endif

     

             /* spsr */

             mov x0, #(PSR_F_BIT |PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |

                           PSR_MODE_EL1h)

             msr  spsr_el2, x0              //设置状态寄存器,退出EL2,进入EL1

             msr  elr_el2, lr

             eret

    ENDPROC(el2_setup)

     

             .align        3

    2:     .quad       .

             .quad       PAGE_OFFSET

    //如果不是对称多处理(SMP)系统,则下面的次级CPU初始化功能都不做

    #ifdef CONFIG_SMP

             .pushsection    .smp.pen.text, "ax"

             .align        3

    1:     .quad       .

             .quad       secondary_holding_pen_release

     

             /*

              * This provides a "holding pen" forplatforms to hold all secondary

              * cores are held until we're ready for them toinitialise.

              */

    ENTRY(secondary_holding_pen)

             bl      el2_setup                          //Drop to EL1

             mrs  x0, mpidr_el1

             and  x0, x0, #15                        //CPU number

             adr   x1, 1b

             ldp   x2, x3, [x1]

             sub   x1, x1, x2

             add  x3, x3, x1

    pen: ldr    x4, [x3]

             cmp x4, x0

             b.eq secondary_startup

             wfe

             b       pen

    ENDPROC(secondary_holding_pen)

             .popsection

     

    ENTRY(secondary_startup)

             /*

              * Common entry point for secondary CPUs.

              */

             mrs  x22, midr_el1                   //x22=cpuid

             mov x0, x22

             bl      lookup_processor_type

             mov x23, x0                               //x23=current cpu_table

             cbz   x23, __error_p                          // invalid processor (x23=0)?

     

             bl      __calc_phys_offset                 // x24=phys offset

             pgtbl        x25, x26, x24                    // x25=TTBR0, x26=TTBR1

             ldr    x12, [x23, #CPU_INFO_SETUP]

             add  x12, x12, x28                    //__virt_to_phys

             blr    x12                             //initialise processor

     

             ldr    x21, =secondary_data

             ldr    x27, =__secondary_switched         // address to jump to after enablingthe MMU

             b       __enable_mmu

    ENDPROC(secondary_startup)

     

    ENTRY(__secondary_switched)

             ldr    x0, [x21]                   //get secondary_data.stack

             mov sp, x0

             mov x29, #0

             b       secondary_start_kernel

    ENDPROC(__secondary_switched)

    #endif      /* CONFIG_SMP */

     

    /*

     * Setup common bits before finally enablingthe MMU. Essentially this is just

     * loading the page table pointer and vectorbase registers.

     *

     * On entry to this code, x0 must contain theSCTLR_EL1 value for turning on

     * the MMU.

     */

    __enable_mmu:

             ldr    x5, =vectors

             msr  vbar_el1, x5

             msr  ttbr0_el1, x25                  // load TTBR0

             msr  ttbr1_el1, x26                  // load TTBR1

             isb

             b       __turn_mmu_on

    ENDPROC(__enable_mmu)

     

    /*

     * Enable the MMU. This completely changes thestructure of the visible memory

     * space. You will not be able to traceexecution through this.

     *

     * x0  = system control register

     *  x27 =*virtual* address to jump to upon completion

     *

     * other registers depend on the functioncalled upon completion

     */

             .align        6

    __turn_mmu_on:

             msr  sctlr_el1, x0

             isb

             br     x27

    ENDPROC(__turn_mmu_on)

     

    /*

     * Calculate the start of physical memory.

     */

    __calc_phys_offset:                                  //计算起始物理地址值

             adr   x0, 1f                                  //把标号1处地址给x0,因为adr指令是相对当前pc寄存器的偏移,而pc即物理地址所以这里是1f处的物理地址

             ldp   x1, x2, [x0]                        //把标号1处的前八字节给x1,后八字节给x2

             sub   x28, x0, x1                        // 利用x0-x1计算虚拟物理地址之间的偏移。x28 = PHYS_OFFSET - PAGE_OFFSET,

             add  x24, x2, x28                      // x24 = PHYS_OFFSET,计算出起始物理地址给x24

             ret

    ENDPROC(__calc_phys_offset)

     

             .align 3

    1:     .quad       .

             .quad       PAGE_OFFSET

     

    /*

     * Macro to populate the PGD for thecorresponding block entry in the next

     * level (tbl) for the given virtual address.

     *

     * Preserves:  pgd,tbl, virt

     * Corrupts:    tmp1,tmp2

     */

             .macro     create_pgd_entry,pgd, tbl, virt, tmp1, tmp2

             lsr     mp1, virt,#PGDIR_SHIFT

             and  mp1, mp1, #PTRS_PER_PGD- 1       // PGD index

             orr   mp2, bl, #3                          // PGD entry tabletype

             str    mp2, [pgd, mp1, lsl #3]

             .endm

     

    /*

     * Macro to populate block entries in the pagetable for the start..end

     * virtual range (inclusive).

     *

     * Preserves:  tbl,flags

     * Corrupts:    phys,start, end, pstate

     */

             .macro     create_block_map,tbl, flags, phys, start, end, idmap=0

             lsr     phys, phys,#BLOCK_SHIFT

             .if     idmap

             and  start, phys,#PTRS_PER_PTE - 1 // table index

             .else

             lsr     start, start,#BLOCK_SHIFT

             and  start, start,#PTRS_PER_PTE - 1 // table index

             .endif

             orr   phys, flags,phys, lsl #BLOCK_SHIFT // table entry

             .ifnc start,end

             lsr     end, end,#BLOCK_SHIFT

             and  end, end,#PTRS_PER_PTE - 1             // table endindex

             .endif

    9999:       str    phys, [ bl,start, lsl #3]                // storethe entry

             .ifnc start,end

             add  start, start, #1                       // next entry

             add  phys, phys,#BLOCK_SIZE             // next block

             cmp start, end

             b.ls   9999b

             .endif

             .endm

     

    /*

     *设置初始化页表。我们只设置使内核能跑起来的最少数量的页表

    *以下内容是必须的

     *   - 一致性映射用于使能MMU(低地址,TTBR0)

    *   -前几MB的内核线性映射包含FDT块(TTBR1)

    * 为了解释更清楚,找了个网图,该图地址从下网上递增

     */

    //内核镜像里的所有符号都是虚拟地址,在完成了基本初始化,内核需要跳到C语言的start_kernel运行,

    //此时如果不开启MMU,则符号的地址当成物理地址,直接使用会导致内核崩溃。

    //ARMv8页表建立过程请参看我的另一篇博文;ARMv8(aarch64)页表建立过程详细分析

    __create_page_tables:

             pgtbl        x25,x26, x24                    //idmap_pg_dir and swapper_pg_dir addresses看前面pgtbl宏,

                                                                          //x25:ttbr0(两个page), x26:ttbr1(3个page)  x24:内核起始物理地址。

                                                                          //这里宏的意思是,在上图KERNEL_RAM_PADDR下面,PHYS_OFFSET上面开辟3个页面,起始地址给x26,

    //然后再开辟2个页面,起始地址给x25

     

             /*

              * Clear the idmap andswapper page tables.

              */

             mov x0, x25

             add  x6, x26,#SWAPPER_DIR_SIZE                 //以下内容就是清空上面申请的五个页面

    1:     stp   xzr, xzr, [x0], #16

             stp   xzr, xzr, [x0],#16

             stp   xzr, xzr, [x0],#16

             stp   xzr, xzr, [x0],#16

             cmp x0, x6

             b.lo  1b

     

             ldr    x7, =MM_MMUFLAGS            //内核中该标号定义是:#defineMM_MMUFLAGS         PTE_ATTRINDX(MT_NORMAL)| PTE_FLAGS

                                                                          //#define MT_NORMAL                 4; #definePTE_FLAGS         PTE_TYPE_PAGE | PTE_AF |PTE_SHARED

     

             /*

              * Create the identitymapping.

              */

             add  x0, x25,#PAGE_SIZE                // section tableaddress

             adr   x3, __turn_mmu_on                // virtual/physical address

             create_pgd_entry x25, x0, x3, x5, x6

             create_block_map x0, x7, x3, x5, x5, idmap=1

     

             /*

              * Map the kernelimage (starting with PHYS_OFFSET).

              */

             add  x0, x26,#PAGE_SIZE                // section tableaddress

             mov x5, #PAGE_OFFSET

             create_pgd_entry x26, x0, x5, x3, x6

             ldr    x6, =KERNEL_END- 1

             mov x3, x24                               // phys offset

             create_block_map x0, x7, x3, x5, x6

     

             /*

              * Map the FDT blob(maximum 2MB; must be within 512MB of

              * PHYS_OFFSET).

              */

             mov x3, x21                               // FDT physaddress

             and  x3, x3, #~((1<< 21) - 1)  // 2MB aligned

             mov x6, #PAGE_OFFSET

             sub   x5, x3, x24                        // subtract PHYS_OFFSET

             tst    x5, #~((1<< 29) - 1)                  //within 512MB?

             csel  x21, xzr, x21, ne               // zero the FDT pointer

             b.ne 1f

             add  x5, x5, x6                  // __va(FDT blob)

             add  x6, x5, #1<< 21               // 2MB for theFDT blob

             sub   x6, x6, #1                          // inclusive range

             create_block_map x0, x7, x3, x5, x6

    1:

             ret

    ENDPROC(__create_page_tables)

             .ltorg

     

             .align        3

             .type        __switch_data,%object

    __switch_data:                         //先定义一些标号

             .quad       __mmap_switched

             .quad       __data_loc                       // x4

             .quad       _data                                 // x5

             .quad       __bss_start                       // x6

             .quad       _end                                   // x7

             .quad       processor_id                    // x4

             .quad       __fdt_pointer                   // x5

             .quad       memstart_addr                        // x6

             .quad       init_thread_union+ THREAD_START_SP // sp

     

    /*

     *该函数在MMU开启后执行,用于设置C语言运行时的环境,例如执行重定位,设置堆栈,清空BSS段等

     */

    __mmap_switched:

             adr   x3, __switch_data+ 8             //x3指向__data_loc起始处

     

             ldp   x4, x5, [x3], #16                       //x4=__data_loc;x5=_data

             ldp   x6, x7, [x3], #16                       //x6=__bss_start;x7=_end

     

             /*

    这段代码比较难懂,直接翻译过来如下:

    if(__data_loc==_data)          

    b       2f

    else

    if _data==__bss_start

                      b       2f

    else

             memcpy(_data, __data_loc,8)

             效果等同于:

                      if (__data_loc == _data || _data != _bass_start)  

    memcpy(_data, __data_loc, 8);

    */

             cmp x4, x5                                 // Copy datasegment if needed,

    1:     ccmp        x5, x6, #4, ne

             b.eq 2f

             ldr    x16, [x4], #8

             str    x16, [x5], #8

             b       1b

    2:

    1:     cmp x6, x7

             b.hs 2f

             str    xzr, [x6], #8                       // Clear BSS

             b       1b

    2:

             ldp   x4, x5, [x3], #16

             ldr    x6, [x3], #8

             ldr    x16, [x3]

             mov sp, x16                      //设置栈指针

             str    x22, [x4]                   // Save processor ID

             str    x21, [x5]                   // Save FDT pointer

             str    x24, [x6]                   // Save PHYS_OFFSET

             mov x29, #0

             b       start_kernel             //跳到start_kernel继续运行

    ENDPROC(__mmap_switched)

     

    /*

     * Exception handling. Something went wrong andwe can't proceed. We ought to

     * tell the user, but since we don't have anyguarantee that we're even

     * running on the right architecture, we dovirtually nothing.

     */

    __error_p:

    ENDPROC(__error_p)

     

    __error:

    1:     nop

             b       1b

    ENDPROC(__error)

     

    /*

     * This function gets the processor ID in w0and searches the cpu_table[] for

     * a match. It returns a pointer to the structcpu_info it found. The

     * cpu_table[] must end with an empty (allzeros) structure.

     *

     * This routine can be called via C code and itneeds to work with the MMU

     * both disabled and enabled (the offset iscalculated automatically).

     */

    ENTRY(lookup_processor_type)

             adr   x1,__lookup_processor_type_data              //把标号__lookup_processor_type_data的虚拟地址给x1,见下面标号内容

             ldp   x2, x3, [x1]                                                           //把x1地址处的内容前16字节分别给x3,x2。X2中存储前八字节

             sub   x1, x1, x2                  // get offset between VA andPA   x1减去x2就是虚拟地址与物理地址的差值,

    //再加上x3,就是cpu_table结构体在内存中的物理地址,在赋值给x3.

             add  x3, x3, x1                  // convert VA to PA

    1:

             /*结构体cpu_info内容:

    *struct cpu_info {

              *unsigned int         cpu_id_val;

              *unsigned int         cpu_id_mask;

              *const char   *cpu_name;

              *unsigned long     (*cpu_setup)(void);};

             */

             ldp   w5, w6, [x3]                     // load cpu_id_val andcpu_id_mask 把cpu_table这个结构体的前八字节分别给w6,w5,w5存储前4字节。即cpu id

             cbz   w5, 2f                                // end of list?,如果w5寄存器值为0,则跳转到前面2标号处

             and  w6, w6, w0                       //把cpu id mask与w0寄存器(CPUID)做与运算,w0就是前面mrs        x22,midr_el1执行结果,即cpuid

             cmp w5, w6                               //对比操作系统中设定的CPUID与实际的处理器ID是否相同

             b.eq 3f                                        //相同则跳转到标号3处

             add  x3, x3,#CPU_INFO_SZ   //否则把x3的值加上sizeof(cpuinfo)【=sizeof(cpu_table)】,再跳转到后面标号1处做比对。

             b       1b

    2:

             mov x3, #0                                 // unknownprocessor,由于cpu id为零,无法识别处理器

    3:

             mov x0, x3                                 //把x3中内容存到x0中,当做参数返回。X3存储的是cpu_table的物理地址

             ret

    ENDPROC(lookup_processor_type)

     

             .align        3

             .type        __lookup_processor_type_data,%object

    __lookup_processor_type_data:

             .quad       .

             .quad       cpu_table

             .size __lookup_processor_type_data,. - __lookup_processor_type_data

     

    /*

     * Determine validity of the x21 FDT pointer.

     * The dtb must be 8-byte aligned and live inthe first 512M of memory.

     * 判断x21寄存器中的FDT指针是否有效;dtb必须是8字节对齐并且在内存前512M中

     */

    __vet_fdt:

             tst    x21, #0x7                          //前面提到过x21中存放fdt地址,测试低三位

             b.ne 1f

             cmp x21, x24                    //对比x21地址与内核镜像起始物理地址PHYS_OFFSET比对,若小于则无效

             b.lt   1f

             mov x0, #(1 <<29)           //1<<29=512M

             add  x0, x0, x24                //对比x21与起始物理地址+512M

             cmp x21, x0                     

             b.ge 1f                               //如果大于512M则无效

             ret                                       //否则返回

    1:

             mov x21, #0             //清空x21并返回

             ret

    ENDPROC(__vet_fdt)

     

     

    希望大家有问题留言给我,一起讨论共同进步:)

    参考网址:http://blog.csdn.net/tommy_wxie/article/details/7238748

  • 相关阅读:
    WF4.0 基础篇 (十九) Persistence 持久化
    WF是什么系列之 [ WF控制逻辑线路的算法]
    控制3D模型的例子
    企业信息化建设发展报告
    WF是什么系列之 [ WF控制机械手臂 (3D模型) ]
    WF4.0 RC 对比 Beta2 的变化
    企业信息化所面临的问题
    企业应用的SOA时代
    WF4.0 基础篇 (二十三) 范型Activity
    WF4.0 应用篇(三) IActivityTemplateFactory
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3299536.html
Copyright © 2020-2023  润新知