• DeepLearnToolbox使用总结


    GitHub链接:DeepLearnToolbox


    DeepLearnToolbox

    A Matlab toolbox for Deep Learning.

    Deep Learning is a new subfield of machine learning that focuses on learning deep hierarchical models of data. It is inspired by the human brain's apparent deep (layered, hierarchical) architecture. A good overview of the theory of Deep Learning theory is Learning Deep Architectures for AI

    Directories included in the toolbox

    NN/ - A library for Feedforward Backpropagation Neural Networks

    CNN/ - A library for Convolutional Neural Networks

    DBN/ - A library for Deep Belief Networks

    SAE/ - A library for Stacked Auto-Encoders

    CAE/ - A library for Convolutional Auto-Encoders

    util/ - Utility functions used by the libraries

    data/ - Data used by the examples

    tests/ - unit tests to verify toolbox is working

    For references on each library check REFS.md

    Setup

    1. Download.
    2. addpath(genpath('DeepLearnToolbox'));

    Windows下把文件夹加入 path 即可

    %LiFeiteng 
    
    path = pwd;
    files = dir(path);
    
    for i = 3:length(files)
        
        if files(i).isdir        
            file = files(i).name;       
            addpath([path '/' file])
            disp(['add ' file ' to path!'])
        end   
        
    end
    


    我不打算解析代码,想从代码里面学算法是stupid的;有相应的论文,readlist,talk等可以去学习。

    DeepLearnToolbox单隐藏层NN的优化策略:mini-Batch SGD

    function [nn, L]  = nntrain(nn, train_x, train_y, opts, val_x, val_y)
    %NNTRAIN trains a neural net
    % [nn, L] = nnff(nn, x, y, opts) trains the neural network nn with input x and
    % output y for opts.numepochs epochs, with minibatches of size
    % opts.batchsize. Returns a neural network nn with updated activations,
    % errors, weights and biases, (nn.a, nn.e, nn.W, nn.b) and L, the sum
    % squared error for each training minibatch.
    
    assert(isfloat(train_x), 'train_x must be a float');
    assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6')
    
    loss.train.e               = [];
    loss.train.e_frac          = [];
    loss.val.e                 = [];
    loss.val.e_frac            = [];
    opts.validation = 0;
    if nargin == 6
        opts.validation = 1;
    end
    
    fhandle = [];
    if isfield(opts,'plot') && opts.plot == 1
        fhandle = figure();
    end
    
    m = size(train_x, 1);
    
    batchsize = opts.batchsize;
    numepochs = opts.numepochs;
    
    numbatches = m / batchsize;
    
    assert(rem(numbatches, 1) == 0, 'numbatches must be a integer');
    
    L = zeros(numepochs*numbatches,1);
    n = 1;
    for i = 1 : numepochs
        tic;
        
        kk = randperm(m);
        for l = 1 : numbatches
            batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);
            
            %Add noise to input (for use in denoising autoencoder)
            if(nn.inputZeroMaskedFraction ~= 0)
                batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);
            end
            
            batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);
            
            nn = nnff(nn, batch_x, batch_y);
            nn = nnbp(nn);
            nn = nnapplygrads(nn);
            
            L(n) = nn.L;
            
            n = n + 1;
        end
        
        t = toc;
        
        if ishandle(fhandle)
            if opts.validation == 1
                loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
            else
                loss = nneval(nn, loss, train_x, train_y);
            end
            nnupdatefigures(nn, fhandle, loss, opts, i);
        end
            
        disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1))))]);
        nn.learningRate = nn.learningRate * nn.scaling_learningRate;
    end
    end
    


    1.不管是在 nntrain、 nnbp还是nnapplygrads中我都没看到 对算法收敛性的判断,

    而且在实测的过程中 有观察到 epoch过程中 mean-squared-error有 下降-上升-下降 的走势——微小抖动在SGD中 算是正常


    多数还都是在下降(epoch我一般设为 10-40,这个值可能偏小;Hinton 06 science的文章代码记得epoch了200次,我跑了3天也没跑完)

    在SAE/CNN等中 也没看到收敛性的判断。

    2.CAE  没有完成

    3.dropout的优化策略也可以选择


    我测试了 SAE CNN等,多几次epoch(20-30),在MNIST上正确率在 97%+的样子。

    其实cost-function 可以有不同的选择,如果使用 UFLDL的优化方式(固定的优化方法,传入cost-function的函数句柄),在更改cost-function上会更自由。


    可以改进的地方:

    1. mini-Bathch SGD算法 增加收敛性判断

    2.增加 L-BFGS/CG等优化算法

    3.完善CAE等

    4.增加min KL-熵的 Sparse Autoencoder等

    5.优化算法增加对 不同cost-function的支持










  • 相关阅读:
    Yii中CreateUrl的使用总结
    scite配置文件及常用设置
    smarty中判断数组是否为空的方法
    Notepad++添加插件Funtion List 支持PHP
    类的例子1
    class的使用
    lambda 的使用汇总
    作用域
    模块的整理汇总
    函数使用的健壮性
  • 原文地址:https://www.cnblogs.com/keanuyaoo/p/3277982.html
Copyright © 2020-2023  润新知