题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=4433
题目大意:
给两个长度相等的数字串s1,s2。每次操作可以把连续的最多三位都+1或-1,如果超过9则变成0,如果小于0则变成9.问从s1到s2最少的步数。
解题思路:
每一位移动正确最多5位,如果一位一位的移动最多需要1000*5=5000 。
长度有1000太大,不能直接用BFS。
因为每次改变最多只影响3位,前面的i-3位不改变,所以可以设dp[i][j][k]表示处理到了第i位,且最后两位分别为j,k时,前面的i-2位为原串s1时,达到最终的s2的前i位时移动的最小的步数。
转移时,先把第i位移动正确,然后枚举在移动第i位时,前面两位可能到达的状态,此时第i-2位移动的步数要小于等于第i-1位的,第i-1位的要小于等于第i位的,然后根据dp[i-1]的状态更新dp[i]的状态。
比如有三位分别需要移动2 3 4位 第3位需要移动4位,在移动第3位时,可以先都移动2位,然后再后两位移动1位,最后一位再移动一位。
这类的dp做的比较少,以后多分析各种状态。
代码:
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#define eps 1e-6
#define INF 0x1f1f1f1f
#define PI acos(-1.0)
#define ll __int64
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
/*
freopen("data.in","r",stdin);
freopen("data.out","w",stdout);
*/
#define Maxn 1100
//最多只有1000*5
int dp[Maxn][12][12]; //dp[i][x][y]表示处理到了当前i位,且最后两位是x和y的,转到最后的i位所需的最小步数
int a[Maxn],b[Maxn];
char sa[Maxn];
int main()
{
while(~scanf("%s",sa))
{
int n=strlen(sa);
for(int i=1;i<=n;i++)
a[i]=sa[i-1]-'0';
scanf("%s",sa);
for(int i=1;i<=n;i++)
b[i]=sa[i-1]-'0';
memset(dp,INF,sizeof(dp));
dp[0][0][0]=0;
for(int i=1;i<=n;i++)
{
for(int x=0;x<=9;x++)
{
if(i==1&&x) //只有1位的话全部处理为x=0的情况
continue;
for(int y=0;y<=9;y++)
{
int up=(b[i]-y+10)%10; //当前位一定要达到要求
int dow=(y-b[i]+10)%10;
if(i==1) //此时x一定为0
dp[i][x][y]=min(up,dow);
else if(i==2)
{
int xx=0; //i-2位置为0,表示只有一位的情况
for(int j=0;j<=up;j++) //正转
{
int yy=(x+j)%10; //在当前位达到要求时,前面一位最多可以移动up位
dp[i][x][y]=min(dp[i][x][y],dp[i-1][xx][yy]+up);
}
for(int j=0;j<=dow;j++) //反转
{
int yy=(x-j+10)%10;
dp[i][x][y]=min(dp[i][x][y],dp[i-1][xx][yy]+dow);
}
}
else //枚举 操作第i位up或dow时,第i-1位和第i-2位能够到达的状态
{
for(int j=0;j<=up;j++) //2 3 4 先三个移动2 再后面两个移动1 最后一个再移动1
for(int p=j;p<=up;p++) //必须满足第i-1位移动的大于等于第i-2位,
{
int xx=(a[i-2]+j)%10;
int yy=(x+p)%10;
dp[i][x][y]=min(dp[i][x][y],dp[i-1][xx][yy]+up);
}
for(int j=0;j<=dow;j++)
for(int p=j;p<=dow;p++)
{
int xx=((a[i-2]-j)+10)%10;
int yy=(x-p+10)%10;
dp[i][x][y]=min(dp[i][x][y],dp[i-1][xx][yy]+dow);
}
}
}
}
}
if(n==1)
printf("%d
",dp[1][0][a[1]]);
else
printf("%d
",dp[n][a[n-1]][a[n]]);
}
return 0;
}