先用后缀数组给串排好序。dc3 O(n)
二分答案+贪心check
答案的长度len=(n+k-1)/k
如果起点为i长为len串大于当前枚举的答案,i的长度取len-1
从起点判断k个串的长度是否大于等于n
check的时候最多枚举len个起点,每个位置需要枚举n/len个串,时间复杂度O(n),总的时间复杂度O(nlogn+n)
#include <iostream> #include <algorithm> #include <string> #include <fstream> using namespace std; #define ll long long #define MAXN 1000009 int sa[MAXN], pos[MAXN], Rank[MAXN], r[MAXN]; int d, n, k; string s; #define F(x) ((x)/3+((x)%3==1?0:tb)) #define G(x) ((x)<tb?(x)*3+1:((x)-tb)*3+2) int wa[MAXN], wb[MAXN], wv[MAXN], Ws[MAXN]; inline int c0 (int *r, int a, int b) { return r[a] == r[b] && r[a + 1] == r[b + 1] && r[a + 2] == r[b + 2]; } int c12 (int k, int *r, int a, int b) { if (k == 2) return r[a] < r[b] || r[a] == r[b] && c12 (1, r, a + 1, b + 1); else return r[a] < r[b] || r[a] == r[b] && wv[a + 1] < wv[b + 1]; } inline void sort (int *r, int *a, int *b, int n, int m) { int i; for (i = 0; i < n; i++) wv[i] = r[a[i]]; for (i = 0; i < m; i++) Ws[i] = 0; for (i = 0; i < n; i++) Ws[wv[i]]++; for (i = 1; i < m; i++) Ws[i] += Ws[i - 1]; for (i = n - 1; i >= 0; i--) b[--Ws[wv[i]]] = a[i]; return; } inline void dc3 (int *r, int *sa, int n, int m) { int i, j, *rn = r + n, *san = sa + n, ta = 0, tb = (n + 1) / 3, tbc = 0, p; r[n] = r[n + 1] = 0; for (i = 0; i < n; i++) if (i % 3 != 0) wa[tbc++] = i; sort (r + 2, wa, wb, tbc, m); sort (r + 1, wb, wa, tbc, m); sort (r, wa, wb, tbc, m); for (p = 1, rn[F (wb[0])] = 0, i = 1; i < tbc; i++) rn[F (wb[i])] = c0 (r, wb[i - 1], wb[i]) ? p - 1 : p++; if (p < tbc) dc3 (rn, san, tbc, p); else for (i = 0; i < tbc; i++) san[rn[i]] = i; for (i = 0; i < tbc; i++) if (san[i] < tb) wb[ta++] = san[i] * 3; if (n % 3 == 1) wb[ta++] = n - 1; sort (r, wb, wa, ta, m); for (i = 0; i < tbc; i++) wv[wb[i] = G (san[i])] = i; for (i = 0, j = 0, p = 0; i < ta && j < tbc; p++) sa[p] = c12 (wb[j] % 3, r, wa[i], wb[j]) ? wa[i++] : wb[j++]; for (; i < ta; p++) sa[p] = wa[i++]; for (; j < tbc; p++) sa[p] = wb[j++]; return; } inline bool check (int x) { for (int i = 0; i < d; i++) { int j = i, t = 0; while (t < k) { if (Rank[j % n] <= x) j += d; else j += d - 1; t++; } if (j - i >= n) return 1; } return 0; } int main() { while (scanf ("%d %d", &n, &k) == 2) { cin >> s; s += s; d = (n + k - 1) / k; for (int i = 0; i < (n << 1); i++) r[i] = s[i] - '0'; r[n << 1] = 0; dc3 (r, sa, s.size() + 1, 10); for (int i = 1, p = 0; i <= (n << 1); i++) Rank[sa[i]] = ++p; for (int i = 1, p = 0; i <= (n << 1); i++) if (sa[i] < n ) pos[++p] = sa[i]; int l = 1, r = n, last = -1; while (l <= r) { int mid = (l + r) >> 1; if (check (Rank[pos[mid]]) ) last = pos[mid], r = mid - 1; else l = mid + 1; } for (int i = last; i < last + d; i++) putchar (s[i]); putchar (10); } }