• CF933B A Determined Cleanup


    B. A Determined Cleanup
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    In order to put away old things and welcome a fresh new year, a thorough cleaning of the house is a must.

    Little Tommy finds an old polynomial and cleaned it up by taking it modulo another. But now he regrets doing this...

    Given two integers p and k, find a polynomial f(x) with non-negative integer coefficients strictly less than k, whose remainder is p when divided by (x + k). That is, f(x) = q(x)·(x + k) + p, where q(x) is a polynomial (not necessarily with integer coefficients).

    Input
    The only line of input contains two space-separated integers p and k (1 ≤ p ≤ 1018, 2 ≤ k ≤ 2 000).

    Output
    If the polynomial does not exist, print a single integer -1, or output two lines otherwise.

    In the first line print a non-negative integer d — the number of coefficients in the polynomial.

    In the second line print d space-separated integers a0, a1, ..., ad - 1, describing a polynomial fulfilling the given requirements. Your output should satisfy 0 ≤ ai < k for all 0 ≤ i ≤ d - 1, and ad - 1 ≠ 0.

    If there are many possible solutions, print any of them.

    Examples
    inputCopy
    46 2
    output
    7
    0 1 0 0 1 1 1
    inputCopy
    2018 214
    output
    3
    92 205 1
    Note
    In the first example, f(x) = x6 + x5 + x4 + x = (x5 - x4 + 3x3 - 6x2 + 12x - 23)·(x + 2) + 46.

    In the second example, f(x) = x2 + 205x + 92 = (x - 9)·(x + 214) + 2018.

    【题解】
    我们可以对题目要求进行变形得:(f(x)=k·q(x)+x·q(x)+p)
    我们设(f(x))的的值为(sum_{i=0}^{d-1} a_ix^i),(q(x))的值为(sum_{i=0}^{d-2}b_ix^i)观察可知:

    [a_0=k·b_0+p$$$$a_1=k·b_1+b_0$$$$a_3=k·b_2+b_1$$$$·············$$$$a_{d-2}=k·b_{d-2}+b_{d-3}$$$$a_{d-1}=b_{d-2} ]

    我们依次将(b_{d-2}、b_{d-3}、···、b_1、b_0)往上代入,直至得到:

    [p=sum_{i=0}^{d-1}(-k)^{i}a_i ]

    那就相当于k进制转成10进制了,当然我们可以展开得:

    [p=a_0-a_1k+a_2k^2-a_3k^3······ ]

    那就是不断取模咯,注意long long

    #include<cstdio>
    #define LL long long
    LL p,k,cnt=0,ans[100000];
    int main() {
    	scanf("%lld%lld",&p,&k);
    	while(p) {
    		ans[cnt]=(p%k+k)%k;
    		p=-(p-ans[cnt])/k;
    		cnt++;
    	}
    	printf("%lld
    ",cnt);
    	for(int i=0; i<cnt; i++) {
    		if(i)putchar(' ');
    		printf("%lld",ans[i]);
    	}
    	return 0;
    }
    
  • 相关阅读:
    LINQ大全。
    李开复回复:为什么很多人进不了Google
    判断输入的是否是数字?
    SQL Server 2005安装详解
    学习asp.net比较完整的流程
    .NET常用网站
    软件设计经典书籍推荐
    Linux 下zip包的压缩与解压
    centos的用户、组权限、添加删除用户等操作的详细操作命令
    CentOS5.5 默认基本服务详解
  • 原文地址:https://www.cnblogs.com/kcfzyhq/p/8524739.html
Copyright © 2020-2023  润新知