Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
题意:
给出N个数和Q次询问区间[L,R],对于每个询问,找到区间内连续出现最多次的数,输出该次数。
题解:
首先将每个数的连续出现次数存入数组f[i],对于所询问区间内,将最左子区间的连续且相同数进行特殊处理,单独计算该数在此区间的次数,然后计算此区间内除该数外的rmq,两者取最值即可。
#include<algorithm> #include<iostream> #include<cstdio> #include<cmath> using namespace std; typedef long long ll; const int MAX=100005; int dp[MAX][20],mm[MAX],f[MAX]; void initrmq(int n,int b[]) { mm[0]=-1; for(int i=1;i<=n;i++) { mm[i]=((i&(i-1))==0)?mm[i-1]+1:mm[i-1]; dp[i][0]=f[i]; } for(int j=1;j<=mm[n];j++) for(int i=1;i+(1<<j)-1<=n;i++) dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int rmq(int x,int y) { int k=mm[y-x+1]; return max(dp[x][k],dp[y-(1<<k)+1][k]); } int main() { int n,q,i; while(scanf("%d",&n)&&n) { scanf("%d",&q); int b[MAX]; for(i=1;i<=n;i++) { scanf("%d",&b[i]); if(i==1) { f[i]=1; continue; } if(b[i]==b[i-1]) f[i]=f[i-1]+1; else f[i]=1; } initrmq(n,f); for(i=1;i<=q;i++) { int l,r; scanf("%d%d",&l,&r); int tl=l; while(tl<=r&&b[tl]==b[tl-1])tl++; printf("%d ",max(tl-l,rmq(tl,r))); } } return 0; }