圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半。这一定理叫做圆周角定理。该定理反映的是圆周角与圆心角的关系。
https://baike.baidu.com/item/%E5%9C%86%E5%91%A8%E8%A7%92%E5%AE%9A%E7%90%86
已知在⊙O中,∠BOC与圆周角∠BAC同对弧BC,求证:∠BOC=2∠BAC.
证明:
情况1:
如图1,当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时:
解:∴OA=OC
∴∠BAC=∠ACO(等边对等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情况2:
如图2,,当圆心O在∠BAC的内部时:
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等边对等角)
∵∠BOD、∠COD分别是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等于两个不相邻两个内角的和)
∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等于两个不相邻两个内角的和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC