• 交替方向乘子法(Alternating Direction Method of Multipliers)


    交替方向乘子法(Alternating Direction Method of Multipliers)

    作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

    1. 交替方向乘子法简介——Alternating Direction Method of Multipliers

        ADMM 最早分别由 Glowinski & Marrocco 及 Gabay & Mercier 于 1975 年和 1976 年提出,并被 Boyd 等人于 2011 年重新综述并证明其适用于大规模分布式优化问题。

        由于 ADMM 的提出早于大规模分布式计算系统和大规模优化问题的出现,所以在 2011 年以前,这种方法并不广为人知。

        交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)是一种求解具有可分离的凸优化问题的计算框架, 由于其处理速度快,收敛性能好,ADMM适用于求解分布式凸优化问题,特别是统计学习问题。 主要应用在解空间规模很大的情况,强制分块求解,而且解的绝对精度要求不是太高。

        ADMM以先分解再结合的形式求解问题,即先把原问题分解成若干个相对原问题较简单的子问题,再把子问题的解结合起来得到原问题的全局解。

        ADMM也可以看作是对偶分解法和增广拉格朗日乘子法的结合,使该算法有分解性的同时保证了良好的收敛性。

    2. 对偶上升法——Dual Ascent

    3. 共轭函数与对偶函数——Conjugate Function and Dual Function

    4. 对偶分解——Dual Decomposition

    5. 增广拉格朗日乘子法——Augmented Lagrangians and the Method of Multipliers

    6. 交替方向乘子法——ADMM

    7. 尺度化后的交替方向乘子法——Scaled Form

    8. 参考文献

    [1] Boyd S , Parikh N , Chu E , et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1):1-122.

    [2] 陈庆国. 关于交替方向乘子法一些问题的研究[D].中国计量大学,2018.

    [3] 交替方向乘子法(ADMM) - 凯鲁嘎吉 - 博客园

    [4] ADMM: http://web.stanford.edu/~boyd/admm.html

    [5] Stephen Boyd, Lieven Vandenberghe. Convex Optimization[M]. 世界图书出版公司, 2004.

  • 相关阅读:
    第十二章 基本数据类型
    第十一章 变量名的力量
    第十章 使用变量的一般事项
    第九章 伪代码编程过程
    第八章 防御式编程
    JMeter简介
    第七章 高质量的子程序
    第六章 可以工作的类
    第五章 软件构建中的设计
    第四章 关键的“构建”决策
  • 原文地址:https://www.cnblogs.com/kailugaji/p/12676095.html
Copyright © 2020-2023  润新知