• 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)


    图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)

    作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

    1. 图Lasso方法的基本理论

    2. 坐标下降算法

    3. 图Lasso算法

    4. MATLAB程序

        数据见参考文献[2]

    4.1 方法一

    demo.m

    load SP500
    data = normlization(data);
    S = cov(data);  %样本协方差
    [X, W] = glasso_1(double(S), 0.5);
    %X:sigma^(-1), W:sigma
    [~, idx] = sort(info(:,3));
    colormap gray
    imagesc(X(idx, idx) == 0)
    axis off
    
    %% Data Normalization
    function data = normlization(data)
    data = bsxfun(@minus, data, mean(data));
    data = bsxfun(@rdivide, data, std(data));
    end
    

    glasso_1.m

    function [X, W] = glasso_1(S, lambda)
    %% Graphical Lasso - Friedman et. al, Biostatistics, 2008
    % Input:
    %   S - 样本的协方差矩阵
    %   lambda - 罚参数
    % Output:
    %   X - 精度矩阵    sigma^(-1)
    %   W - 协方差矩阵   sigma
    %%
    p = size(S,1);  %数据维度
    W = S + lambda * eye(p);  %W=S+λI
    beta = zeros(p) - lambda * eye(p);   %β=-λI
    eps = 1e-4;
    finished = false(p);   %finished:p*p的逻辑0矩阵
    while true
        for j = 1 : p
            idx = 1 : p; idx(j) = [];
            beta(idx, j) = lasso(W(idx, idx), S(idx, j), lambda, beta(idx, j));
            W(idx, j) = W(idx,idx) * beta(idx, j);  %W=W*β
            W(j, idx) = W(idx, j);
        end
        index = (beta == 0);
        finished(index) = (abs(W(index) - S(index)) <= lambda);
        finished(~index) = (abs(W(~index) -S(~index) + lambda * sign(beta(~index))) < eps);
        if finished
            break;
        end
    end
    X = zeros(p);
    for j = 1 : p
        idx = 1 : p; idx(j) = [];
        X(j,j) = 1 / (W(j,j) - dot(W(idx,j), beta(idx,j)));
        X(idx, j) = -1 * X(j, j) * beta(idx,j);
    end
    % X = sparse(X);
    end
    

    lasso.m

    function w = lasso(A, b, lambda, w)
    % Lasso 
    p = size(A,1);
    df = A * w - b;
    eps = 1e-4;
    finished = false(1, p);
    while true
        for j = 1 : p
            wtmp = w(j);
            w(j) = soft(wtmp - df(j) / A(j,j), lambda / A(j,j));
            if w(j) ~= wtmp
                df = df + (w(j) - wtmp) * A(:, j); % update df
            end
        end
        index = (w == 0);
        finished(index) = (abs(df(index)) <= lambda);
        finished(~index) = (abs(df(~index) + lambda * sign(w(~index))) < eps);
        if finished
            break;
        end
    end
    end
    %% Soft thresholding
    function x = soft(x, lambda)
    x = sign(x) * max(0, abs(x) - lambda);
    end
    

    结果

    注意:罚参数lamda的设定对逆协方差的稀疏性的影响很大,可以用交叉验证方式得到。

    4.2 方法二

    graphicalLasso.m

    function [Theta, W] = graphicalLasso(S, rho, maxIt, tol)
    % http://www.ece.ubc.ca/~xiaohuic/code/glasso/glasso.htm
    % Solve the graphical Lasso
    % minimize_{Theta > 0} tr(S*Theta) - logdet(Theta) + rho * ||Theta||_1
    % Ref: Friedman et al. (2007) Sparse inverse covariance estimation with the
    % graphical lasso. Biostatistics.
    % Note: This function needs to call an algorithm that solves the Lasso
    % problem. Here, we choose to use to the function *lassoShooting* (shooting
    % algorithm) for this purpose. However, any Lasso algorithm in the
    % penelized form will work.
    %
    % Input:
    % S -- sample covariance matrix
    % rho --  regularization parameter
    % maxIt -- maximum number of iterations
    % tol -- convergence tolerance level
    %
    % Output:
    % Theta -- inverse covariance matrix estimate
    % W -- regularized covariance matrix estimate, W = Theta^-1
    
    p = size(S,1);
    
    if nargin < 4, tol = 1e-6; end
    if nargin < 3, maxIt = 1e2; end
    
    % Initialization
    W = S + rho * eye(p);   % diagonal of W remains unchanged
    W_old = W;
    i = 0;
    
    % Graphical Lasso loop
    while i < maxIt,
        i = i+1;
        for j = p:-1:1,
            jminus = setdiff(1:p,j);
            [V D] = eig(W(jminus,jminus));
            d = diag(D);
            X = V * diag(sqrt(d)) * V'; % W_11^(1/2)
            Y = V * diag(1./sqrt(d)) * V' * S(jminus,j);    % W_11^(-1/2) * s_12
            b = lassoShooting(X, Y, rho, maxIt, tol);
            W(jminus,j) = W(jminus,jminus) * b;
            W(j,jminus) = W(jminus,j)';
        end
        % Stop criterion
        if norm(W-W_old,1) < tol, 
            break; 
        end
        W_old = W;
    end
    if i == maxIt,
        fprintf('%s
    ', 'Maximum number of iteration reached, glasso may not converge.');
    end
    
    Theta = W^-1;
    
    % Shooting algorithm for Lasso (unstandardized version)
    function b = lassoShooting(X, Y, lambda, maxIt, tol),
    
    if nargin < 4, tol = 1e-6; end
    if nargin < 3, maxIt = 1e2; end
    
    % Initialization
    [n,p] = size(X);
    if p > n,
        b = zeros(p,1); % From the null model, if p > n
    else
        b = X  Y;  % From the OLS estimate, if p <= n
    end
    b_old = b;
    i = 0;
    
    % Precompute X'X and X'Y
    XTX = X'*X;
    XTY = X'*Y;
    
    % Shooting loop
    while i < maxIt,
        i = i+1;
        for j = 1:p,
            jminus = setdiff(1:p,j);
            S0 = XTX(j,jminus)*b(jminus) - XTY(j);  % S0 = X(:,j)'*(X(:,jminus)*b(jminus)-Y)
            if S0 > lambda,
                b(j) = (lambda-S0) / norm(X(:,j),2)^2;
            elseif S0 < -lambda,
                b(j) = -(lambda+S0) / norm(X(:,j),2)^2;
            else
                b(j) = 0;
            end
        end
        delta = norm(b-b_old,1);    % Norm change during successive iterations
        if delta < tol, break; end
        b_old = b;
    end
    if i == maxIt,
        fprintf('%s
    ', 'Maximum number of iteration reached, shooting may not converge.');
    end

    结果

    >> A=[5.9436    0.0676    0.5844   -0.0143
        0.0676    0.5347   -0.0797   -0.0115
        0.5844   -0.0797    6.3648   -0.1302
       -0.0143   -0.0115   -0.1302    0.2389
    ];
    >> [Theta, W] = graphicalLasso(A, 1e-4)
    
    Theta =
    
        0.1701   -0.0238   -0.0159    0.0003
       -0.0238    1.8792    0.0278    0.1034
       -0.0159    0.0278    0.1607    0.0879
        0.0003    0.1034    0.0879    4.2369
    
    
    W =
    
        5.9437    0.0675    0.5843   -0.0142
        0.0675    0.5348   -0.0796   -0.0114
        0.5843   -0.0796    6.3649   -0.1301
       -0.0142   -0.0114   -0.1301    0.2390

    5. 补充:近端梯度下降(Proximal Gradient Descent, PGD)求解Lasso问题

    6. 参考文献

    [1] 林祝莹. 图Lasso及相关方法的研究与应用[D].燕山大学,2016.

    [2] Graphical Lasso for sparse inverse covariance selection

    [3] 周志华. 机器学习[M]. 清华大学出版社, 2016.

    [4] Graphical lasso in R and Matlab

    [5] Graphical Lasso

  • 相关阅读:
    字符串加密
    接口实例
    RecyclerView添加Hearder
    基于Vue实现图片在指定区域内移动
    Tinymce 编辑器添加自定义图片管理插件
    LocalStorage和sessionStorage之间的区别
    javascript之url转义escape()、encodeURI()和decodeURI(),ifram父子传参参数有中文时出现乱码
    Js实现简单的音频播放
    通用CSS命名规范
    Hbuilder常用功能汇总
  • 原文地址:https://www.cnblogs.com/kailugaji/p/11688004.html
Copyright © 2020-2023  润新知