划分树,统计每层移到左边的数的和.
Minimum Sum
Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2959 Accepted Submission(s): 684
Problem Description
You are given N positive integers, denoted as x0, x1 ... xN-1. Then give you some intervals [l, r]. For each interval, you need to find a number x to make as small as possible!
Input
The first line is an integer T (T <= 10), indicating the number of test cases. For each test case, an integer N (1 <= N <= 100,000) comes first. Then comes N positive integers x (1 <= x <= 1,000, 000,000) in the next line. Finally, comes an integer Q (1 <=
Q <= 100,000), indicting there are Q queries. Each query consists of two integers l, r (0 <= l <= r < N), meaning the interval you should deal with.
Output
For the k-th test case, first output “Case #k:” in a separate line. Then output Q lines, each line is the minimum value of . Output a blank line after every test case.
Sample Input
2 5 3 6 2 2 4 2 1 4 0 2 2 7 7 2 0 1 1 1
Sample Output
Case #1: 6 4 Case #2: 0 0
Author
standy
Source
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn=100010; typedef long long int LL; int tree[18][maxn]; LL sumL[18][maxn]; int sorted[maxn]; int toleft[18][maxn]; void build(int l,int r,int dep) { if(l==r) return ; int mid=(l+r)/2; int same=mid-l+1; for(int i=l;i<=r;i++) if(tree[dep][i]<sorted[mid]) same--; int lpos=l,rpos=mid+1; for(int i=l;i<=r;i++) { if(tree[dep][i]<sorted[mid]) { tree[dep+1][lpos++]=tree[dep][i]; sumL[dep][i]=sumL[dep][i-1]+tree[dep][i]; } else if(tree[dep][i]==sorted[mid]&&same>0) { tree[dep+1][lpos++]=tree[dep][i]; sumL[dep][i]=sumL[dep][i-1]+tree[dep][i]; same--; } else { tree[dep+1][rpos++]=tree[dep][i]; sumL[dep][i]=sumL[dep][i-1]; } toleft[dep][i]=toleft[dep][l-1]+lpos-l; } build(l,mid,dep+1); build(mid+1,r,dep+1); } LL SUMOFLEFT,NUMOFLEFT; LL query(int L,int R,int l,int r,int dep,int k) { if(l==r) return tree[dep][l]; int mid=(L+R)/2; int cnt=toleft[dep][r]-toleft[dep][l-1]; if(cnt>=k) { int newl=L+toleft[dep][l-1]-toleft[dep][L-1]; int newr=newl+cnt-1; return query(L,mid,newl,newr,dep+1,k); } else { SUMOFLEFT+=sumL[dep][r]-sumL[dep][l-1]; NUMOFLEFT+=cnt; int newr=r+toleft[dep][R]-toleft[dep][r]; int newl=newr-(r-l-cnt); return query(mid+1,R,newl,newr,dep+1,k-cnt); } } int n,m; LL sum[maxn]; int main() { int T_T,cas=1; scanf("%d",&T_T); while(T_T--) { scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%d",sorted+i); tree[0][i]=sorted[i]; sum[i]=sum[i-1]+sorted[i]; } sort(sorted+1,sorted+1+n); build(1,n,0); scanf("%d",&m); printf("Case #%d: ",cas++); while(m--) { int l,r,k; scanf("%d%d",&l,&r); l++; r++; k=(l+r)/2-l+1; SUMOFLEFT=0;NUMOFLEFT=0; LL ave=query(1,n,l,r,0,k); printf("%I64d ",(sum[r]-sum[l-1]-SUMOFLEFT)-SUMOFLEFT+(NUMOFLEFT-(r-l+1-NUMOFLEFT))*ave); } putchar(10); } return 0; }