Lowest Common Ancestor of a Binary Tree
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / ___5__ ___1__ / / 6 _2 0 8 / 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
.
Another example is LCA of nodes 5
and 4
is 5
,
since a node can be a descendant of itself according to the LCA definition.
解题思路:
这道题的意思是求出二叉树不论什么两点的最低公共节点。与二分查找树的不同是,这个查找并没有规律,仅仅能暴力法进行。
解法一:
递归法。
倘若p, q都在root的左孩子树中,则令root=root->left。倘若p, q都在root的右孩子树种,则令root=root->right。否则,返回root。
这样的方法会有非常多反复计算,产生超时错误。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root==NULL){ return NULL; } if(isInTree(root->left, p) && isInTree(root->left, q)){ return lowestCommonAncestor(root->left, p, q); }else if(isInTree(root->right, p) && isInTree(root->right, q)){ return lowestCommonAncestor(root->right, p, q); }else{ return root; } } bool isInTree(TreeNode* root, TreeNode* p){ if(root==NULL){ return false; } return root == p || isInTree(root->left, p) || isInTree(root->right, p); } };解法二:
能够先求出p,q到根节点的路径,然后找到路径中第一个同样的节点。
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root==NULL){ return NULL; } if(p==q){ return p; } vector<TreeNode*> pPath; vector<TreeNode*> qPath; getPath(root, p, pPath); getPath(root, q, qPath); int i = pPath.size() - 1; int j = qPath.size() - 1; while(i>=0 && j>=0){ if(pPath[i] == qPath[j]){ i--; j--; }else{ return pPath[i+1]; } } return pPath[i+1]; } bool getPath(TreeNode* root, TreeNode* p, vector<TreeNode*>& pPath){ if(root==NULL){ return false; } if(root==p){ pPath.push_back(root); return true; } if(getPath(root->left, p, pPath) || getPath(root->right, p, pPath)){ pPath.push_back(root); return true; } return false; } };