• POJ 2955 Brackets (区间dp 括号匹配)



    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 3951   Accepted: 2078

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im n, ai1ai2aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    Source

    Stanford Local 2004

    题目链接:http://poj.org/problem?

    id=2955

    题目大意:给一个括号序列,问序列中合法的括号最多有多少个。若A合法。则[A],(A)均合法,若A,B合法则AB也合法

    题目分析:和POJ 1141那道经典括号匹配类似,这题更简单一些。想办法把问题转化,既然要求最大的括号匹配数,我们考虑加最少的括号。使得整个序列合法,这样就转变成1141那题。开下脑动类比二分图最大匹配的性质,最大匹配+最大独立集=点数,显然要增加最少的点使序列合法,则加的最少的点数即为|最大独立集|。我们要求的是原序列的|最大匹配|,以上纯属yy,以下给出转移方程,和1141一模一样
    dp[i][i] = 1;
    然后枚举区间长度
    1)外围匹配:dp[i][j] = dp[i + 1][j - 1];
    2)外围不匹配。枚举切割点:dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]); (i <= k < j)

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int const INF = 0x3fffffff;
    char s[205];
    int dp[205][205];
    
    int main()
    {
        while(scanf("%s", s) != EOF && strcmp(s, "end") != 0)
        {
            int len = strlen(s);
            memset(dp, 0, sizeof(dp));
            for(int i = 0; i < len; i++)
                dp[i][i] = 1;
            for(int l = 1; l < len; l++)
            {
                for(int i = 0; i < len - l; i++)
                {
                    int j = i + l;
                    dp[i][j] = INF;
                    if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']'))
                        dp[i][j] = dp[i + 1][j - 1];
                    for(int k = i; k < j; k++)
                        dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
                }
            }
            printf("%d
    ", len - dp[0][len - 1]);
        }
    }
    
    


  • 相关阅读:
    平台总体技术架构
    防控激活
    dse测试说明
    设置内核tcp连接数
    删除topic的尝试
    用Jmeter进行接口压力测试的步骤
    性能测试
    配置文件的修改
    mysql 监控
    电子栅栏sql和接口查询
  • 原文地址:https://www.cnblogs.com/jzssuanfa/p/7040016.html
Copyright © 2020-2023  润新知