Divide two integers without using multiplication, division and mod operator.
思路:1.先将被除数和除数转化为long的非负数,注意一定要为long。由于Integer.MIN_VALUE的绝对值超出了Integer的范围。
2.常理:不论什么正整数num都能够表示为num=2^a+2^b+2^c+...+2^n。故能够採用2^a+2^b+2^c+...+2^n来表示商,即dividend=divisor*(2^a+2^b+2^c+...+2^n),(a,b,c,....m互不相等。且最大为31,最小为0)。
而商的最大值为Integer.MIN_VALUE的绝对值。商最多有32个2的指数次相加。故时间复杂度为常数。
3.divisor*2^a用计算机表示为divisor<<a;
注意:若每次仅仅加一个divisor。则面对Integer.MAX_VALUE除以一个非常小的常数(eg:1。2。3),会超时。
public class Solution { public int divide(int dividend, int divisor) { boolean positive = true; if((dividend>0&&divisor<0)||(dividend<0&&divisor>0)) positive = false; long did=dividend>=0?(long)dividend:-(long)dividend; long dis=divisor>=0?(long)divisor:-(long)divisor; long quotients = positiveDivide(did, dis); if (!positive) return (int)-quotients; return (int)quotients; } public long positiveDivide(long did, long dis) { long[] array = new long[32]; long sum = 0; int i = 1; long quotients = 0; if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1。出现故障 for (array[0]=dis; i < 32 && array[i - 1] <= did; i++) array[i] = array[i - 1] << 1; for (i = i - 2; i >= 0; i--) { if (sum <= did - array[i]) { sum += array[i]; quotients += 1 << i; } } return quotients; } }
优化版,减小内存的消耗。不申请动态数组
public class Solution { public int divide(int dividend, int divisor) { boolean positive = true; if((dividend>0&&divisor<0)||(dividend<0&&divisor>0)) positive = false; long did=dividend>=0?(long)dividend:-(long)dividend; long dis=divisor>=0?(long)divisor:-(long)divisor; long quotients = positiveDivide(did, dis); if (!positive) return (int)-quotients; return (int)quotients; } public long positiveDivide(long did, long dis) { long sum = 0; long quotients = 0; if(dis==1) return did;//为了避免-did=Integer.MIN_VALUE,而dis=1。出现故障 //sum从divisor*2^31的開始加起,不能加则试试加上divisor*2^30。 //若不能则试试divisor*2^29,依此类推 for (int i = 31; i >= 0; i--) { long temp=dis<<i;//该式为divisor*2^a //sum<=dividend则说明dividend大于divisor*(2^m+...+2^i),m最大为31 if (sum <= did - temp) { sum += temp; quotients += 1 << i;//2^i } } return quotients; } }