• SHA-1算法c语言实现


    安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息。SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要能够用来验证数据的完整性。在传输的过程中。数据非常可能会发生变化,那么这时候就会产生不同的消息摘要。

    SHA1有例如以下特性:不能够从消息摘要中复原信息;两个不同的消息不会产生相同的消息摘要。

    算法实现的版本号比較多,下面代码来自:http://download.csdn.net/detail/zhangrulzu/2936159,代码行数非常少,但确实实现了想要的效果。

    下载的SHA-1算法:

    #include<stdio.h>
    void creat_w(unsigned char input[64],unsigned long w[80])
    {
       int i,j;unsigned long temp,temp1;
       for(i=0;i<16;i++)
              {
                 j=4*i;
                 w[i]=((long)input[j])<<24 |((long)input[1+j])<<16|((long)input[2+j])<<8|((long)input[3+j])<<0;
    
              }
       for(i=16;i<80;i++)
             {
                 w[i]=w[i-16]^w[i-14]^w[i-8]^w[i-3];
                 temp=w[i]<<1;
                 temp1=w[i]>>31;
                 w[i]=temp|temp1;
    
             }
    }
    char ms_len(long a,char intput[64])
    {
        unsigned long temp3,p1;  int i,j;
        temp3=0;
        p1=~(~temp3<<8);
        for(i=0;i<4;i++)
           {
              j=8*i;
              intput[63-i]=(char)((a&(p1<<j))>>j);
    
           }
    
    }
    main()
    {
       unsigned long H0=0x67452301,H1=0xefcdab89,H2=0x98badcfe,H3=0x10325476,H4=0xc3d2e1f0;
       unsigned long A,B,C,D,E,temp,temp1,temp2,temp3,k,f;int i,flag;unsigned long w[80];
       unsigned char input[64]; long x;int n;
       printf("input message:
    ");
       scanf("%s",input);
       n=strlen(input);
       if(n<57)
              {
                     x=n*8;
                     ms_len(x,input);
                     if(n==56)
                         for(i=n;i<60;i++)
                         input[i]=0;
                     else
                        {
                         input[n]=128;
                         for(i=n+1;i<60;i++)
                         input[i]=0;
                        }
    
              }
    
       creat_w(input,w);
       /*for(i=0;i<80;i++)
       printf("%lx,",w[i]);*/
       printf("
    ");
       A=H0;B=H1;C=H2;D=H3;E=H4;
       for(i=0;i<80;i++)
             {
                   flag=i/20;
                   switch(flag)
                      {
                       case 0: k=0x5a827999;f=(B&C)|(~B&D);break;
                       case 1: k=0x6ed9eba1;f=B^C^D;break;
                       case 2: k=0x8f1bbcdc;f=(B&C)|(B&D)|(C&D);break;
                       case 3: k=0xca62c1d6;f=B^C^D;break;
                      }
                   /*printf("%lx,%lx
    ",k,f); */
                   temp1=A<<5;
                   temp2=A>>27;
                   temp3=temp1|temp2;
                   temp=temp3+f+E+w[i]+k;
                   E=D;
                   D=C;
    
                   temp1=B<<30;
                   temp2=B>>2;
                   C=temp1|temp2;
                   B=A;
                   A=temp;
    
                   printf("%lx,%lx,%lx,%lx,%lx
    ",A,B,C,D,E);
             }
       H0=H0+A;
       H1=H1+B;
       H2=H2+C;
       H3=H3+D;
       H4=H4+E;
       printf("
    output hash value:
    ");
       printf("%lx,%lx,%lx,%lx,%lx",H0,H1,H2,H3,H4);
       getch();
    }
    

    这里对算法验证过程做一个记录说明:

    Visual Studio 2005,文件》新建》项目》Visual c++》Win32控制台应用程序,输入项目名称“SHA1”。完毕;

    把下载的代码贴到SHA1.cpp文件末尾,复制“int _tmain(int argc, _TCHAR* argv[])”,删除_tmain函数。替换“main()”;

    编译代码。提示下面错误:

    错误 2 error C3861: “strlen”: 找不到标识符 e:devlopsha1sha1sha1.cpp 43

    错误 3 error C2664: “ms_len”: 不能将參数 2 从“unsigned char [64]”转换为“char []” e:devlopsha1sha1sha1.cpp 47

    错误 4 error C3861: “getch”: 找不到标识符 e:devlopsha1sha1sha1.cpp 98

    第一条是警告。能够不处理

    警告 1 warning C4996: 'scanf': This function or variable may be unsafe. Consider using scanf_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See online help for details. e:devlopsha1sha1sha1.cpp 42

    双击错误2。定位到错误位置,在“strlen"上单击鼠标右键》Refactor》Add Include,例如以下图:


    假设没有这一项,那应该是没有安装VC助手的原因;

    双击错误3,定位到错误位置。在变量input前加(char*)强制转换;

    双击错误4,定位到错误位置,在“getch"上单击鼠标右键》Refactor》Add Include;

    按F6键编译项目,发现还有错误:

    错误 2 error C2664: “strlen”: 不能将參数 1 从“unsigned char [64]”转换为“const char *” e:devlopsha1sha1sha1.cpp 45

    双击错误2,定位到错误位置,在input前加(LPSTR)强制转换,编译。还有错误:

    错误 2 error C2065: “LPSTR”: 未声明的标识符 e:devlopsha1sha1sha1.cpp 45

    错误 3 error C2146: 语法错误 : 缺少“)”(在标识符“input”的前面) e:devlopsha1sha1sha1.cpp 45

    错误 4 error C2059: 语法错误 : “)” e:devlopsha1sha1sha1.cpp 45

    还是找不到标识符。方法一样:在“LPSTR"上单击鼠标右键》Refactor》Add Include;

    再编译。又报错:

    错误 4 error C4716: “ms_len”: 必须返回一个值 e:devlopsha1sha1sha1.cpp 38

    定位到错误位置,细致看了一下,这个函数的返回值应该没什么用,随便返回一个:return '0';

    再编译,OK。最终生成成功了。

    F5调试,输入:abcd,回车。哦。输出了好多东东,查看代码的输出调用,

    找到92行应该没用,凝视://printf("%lx,%lx,%lx,%lx,%lx ",A,B,C,D,E);//输出编码过程。

    最后得到的SHA1哈希值中还有逗号,找到100行。将printf("%lx,%lx,%lx,%lx,%lx",H0,H1,H2,H3,H4);格式化字符串中的逗号去掉;

    再编译。F5调试。输入:abcd,回车,结果例如以下图:


    得到的结果对不正确呢。找到一个在线SHA1加密工具,输入abcd,结果例如以下:


    对照一下,OK,结果一至。

    改动后的SHA-1算法:

    // SHA1.cpp : 定义控制台应用程序的入口点。
    //
    #include "stdafx.h"
    #include<stdio.h>
    #include <string.h>
    #include <conio.h>
    #include <wtypes.h>
    void creat_w(unsigned char input[64],unsigned long w[80])
    {
       int i,j;unsigned long temp,temp1;
       for(i=0;i<16;i++)
              {
                 j=4*i;
                 w[i]=((long)input[j])<<24 |((long)input[1+j])<<16|((long)input[2+j])<<8|((long)input[3+j])<<0;
    
              }
       for(i=16;i<80;i++)
             {
                 w[i]=w[i-16]^w[i-14]^w[i-8]^w[i-3];
                 temp=w[i]<<1;
                 temp1=w[i]>>31;
                 w[i]=temp|temp1;
    
             }
    }
    char ms_len(long a,char intput[64])
    {
        unsigned long temp3,p1;  int i,j;
        temp3=0;
        p1=~(~temp3<<8);
        for(i=0;i<4;i++)
           {
              j=8*i;
              intput[63-i]=(char)((a&(p1<<j))>>j);
    
           }
    	return '0';
    }
    int _tmain(int argc, _TCHAR* argv[])
    {
       unsigned long H0=0x67452301,H1=0xefcdab89,H2=0x98badcfe,H3=0x10325476,H4=0xc3d2e1f0;
       unsigned long A,B,C,D,E,temp,temp1,temp2,temp3,k,f;int i,flag;unsigned long w[80];
       unsigned char input[64]; long x;int n;
       printf("input message:
    ");
       scanf("%s",input);
       n=strlen((LPSTR)input);
       if(n<57)
              {
                     x=n*8;
                     ms_len(x,(char*)input);
                     if(n==56)
                         for(i=n;i<60;i++)
                         input[i]=0;
                     else
                        {
                         input[n]=128;
                         for(i=n+1;i<60;i++)
                         input[i]=0;
                        }
    
              }
    
       creat_w(input,w);
       /*for(i=0;i<80;i++)
       printf("%lx,",w[i]);*/
       printf("
    ");
       A=H0;B=H1;C=H2;D=H3;E=H4;
       for(i=0;i<80;i++)
             {
                   flag=i/20;
                   switch(flag)
                      {
                       case 0: k=0x5a827999;f=(B&C)|(~B&D);break;
                       case 1: k=0x6ed9eba1;f=B^C^D;break;
                       case 2: k=0x8f1bbcdc;f=(B&C)|(B&D)|(C&D);break;
                       case 3: k=0xca62c1d6;f=B^C^D;break;
                      }
                   /*printf("%lx,%lx
    ",k,f); */
                   temp1=A<<5;
                   temp2=A>>27;
                   temp3=temp1|temp2;
                   temp=temp3+f+E+w[i]+k;
                   E=D;
                   D=C;
    
                   temp1=B<<30;
                   temp2=B>>2;
                   C=temp1|temp2;
                   B=A;
                   A=temp;
    
                   //printf("%lx,%lx,%lx,%lx,%lx
    ",A,B,C,D,E);//输出编码过程
             }
       H0=H0+A;
       H1=H1+B;
       H2=H2+C;
       H3=H3+D;
       H4=H4+E;
       printf("
    output hash value:
    ");
       printf("%lx%lx%lx%lx%lx",H0,H1,H2,H3,H4);
       getch();
    }
    

    改动后项目源代码下载:http://download.csdn.net/detail/testcs_dn/7344003

    注意:此代码存在局限性,字符数大于57的时候,结果就不正确了!

    sha-1仅仅满足64比特的输入 期中有8比特是用于长度的所以大于57的就加不了密了!

    研究算法原理的朋友请參考:Redis源代码中探秘SHA-1算法原理及其编程实现

    以及下面的RFC文档:没有找到中文版。看E文吧!

    RFC中已经给出了实现代码。感兴趣的小伙伴能够提取出来验证!

    Network Working Group                                   D. Eastlake, 3rd
    Request for Comments: 3174                                      Motorola
    Category: Informational                                         P. Jones
                                                               Cisco Systems
                                                              September 2001
    
    
                       US Secure Hash Algorithm 1 (SHA1)
    
    Status of this Memo
    
       This memo provides information for the Internet community.  It does
       not specify an Internet standard of any kind.  Distribution of this
       memo is unlimited.
    
    Copyright Notice
    
       Copyright (C) The Internet Society (2001).  All Rights Reserved.
    
    Abstract
    
       The purpose of this document is to make the SHA-1 (Secure Hash
       Algorithm 1) hash algorithm conveniently available to the Internet
       community.  The United States of America has adopted the SHA-1 hash
       algorithm described herein as a Federal Information Processing
       Standard.  Most of the text herein was taken by the authors from FIPS
       180-1.  Only the C code implementation is "original".
    
    Acknowledgements
    
       Most of the text herein was taken from [FIPS 180-1].  Only the C code
       implementation is "original" but its style is similar to the
       previously published MD4 and MD5 RFCs [RFCs 1320, 1321].
    
       The SHA-1 is based on principles similar to those used by Professor
       Ronald L. Rivest of MIT when designing the MD4 message digest
       algorithm [MD4] and is modeled after that algorithm [RFC 1320].
    
       Useful comments from the following, which have been incorporated
       herein, are gratefully acknowledged:
    
          Tony Hansen
          Garrett Wollman
    
    
    
    Eastlake & Jones             Informational                      [Page 1]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    Table of Contents
    
       1. Overview of Contents...........................................  2
       2. Definitions of Bit Strings and Integers........................  3
       3. Operations on Words............................................  3
       4. Message Padding................................................  4
       5. Functions and Constants Used...................................  6
       6. Computing the Message Digest...................................  6
       6.1 Method 1......................................................  6
       6.2 Method 2......................................................  7
       7. C Code.........................................................  8
       7.1 .h file.......................................................  8
       7.2 .c file....................................................... 10
       7.3 Test Driver................................................... 18
       8. Security Considerations........................................ 20
       References........................................................ 21
       Authors' Addresses................................................ 21
       Full Copyright Statement.......................................... 22
    
    1. Overview of Contents
    
       NOTE: The text below is mostly taken from [FIPS 180-1] and assertions
       therein of the security of SHA-1 are made by the US Government, the
       author of [FIPS 180-1], and not by the authors of this document.
    
       This document specifies a Secure Hash Algorithm, SHA-1, for computing
       a condensed representation of a message or a data file.  When a
       message of any length < 2^64 bits is input, the SHA-1 produces a
       160-bit output called a message digest.  The message digest can then,
       for example, be input to a signature algorithm which generates or
       verifies the signature for the message.  Signing the message digest
       rather than the message often improves the efficiency of the process
       because the message digest is usually much smaller in size than the
       message.  The same hash algorithm must be used by the verifier of a
       digital signature as was used by the creator of the digital
       signature.  Any change to the message in transit will, with very high
       probability, result in a different message digest, and the signature
       will fail to verify.
    
       The SHA-1 is called secure because it is computationally infeasible
       to find a message which corresponds to a given message digest, or to
       find two different messages which produce the same message digest.
       Any change to a message in transit will, with very high probability,
       result in a different message digest, and the signature will fail to
       verify.
    
    
    
    Eastlake & Jones             Informational                      [Page 2]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
       Section 2 below defines the terminology and functions used as
       building blocks to form SHA-1.
    
    2. Definitions of Bit Strings and Integers
    
       The following terminology related to bit strings and integers will be
       used:
    
       a. A hex digit is an element of the set {0, 1, ... , 9, A, ... , F}.
          A hex digit is the representation of a 4-bit string.  Examples:  7
          = 0111, A = 1010.
    
       b. A word equals a 32-bit string which may be represented as a
          sequence of 8 hex digits.  To convert a word to 8 hex digits each
          4-bit string is converted to its hex equivalent as described in
          (a) above.  Example:
    
          1010 0001 0000 0011 1111 1110 0010 0011 = A103FE23.
    
       c. An integer between 0 and 2^32 - 1 inclusive may be represented as
          a word.  The least significant four bits of the integer are
          represented by the right-most hex digit of the word
          representation.  Example: the integer 291 = 2^8+2^5+2^1+2^0 =
          256+32+2+1 is represented by the hex word, 00000123.
    
          If z is an integer, 0 <= z < 2^64, then z = (2^32)x + y where 0 <=
          x < 2^32 and 0 <= y < 2^32.  Since x and y can be represented as
          words X and Y, respectively, z can be represented as the pair of
          words (X,Y).
    
       d. block = 512-bit string.  A block (e.g., B) may be represented as a
          sequence of 16 words.
    
    3. Operations on Words
    
       The following logical operators will be applied to words:
    
       a. Bitwise logical word operations
    
          X AND Y  =  bitwise logical "and" of  X and Y.
    
          X OR Y   =  bitwise logical "inclusive-or" of X and Y.
    
          X XOR Y  =  bitwise logical "exclusive-or" of X and Y.
    
          NOT X    =  bitwise logical "complement" of X.
    
    
    
    Eastlake & Jones             Informational                      [Page 3]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
          Example:
    
                   01101100101110011101001001111011
             XOR   01100101110000010110100110110111
                   --------------------------------
               =   00001001011110001011101111001100
    
       b. The operation X + Y is defined as follows:  words X and Y
          represent integers x and y, where 0 <= x < 2^32 and 0 <= y < 2^32.
          For positive integers n and m, let n mod m be the remainder upon
          dividing n by m.  Compute
    
             z  =  (x + y) mod 2^32.
    
          Then 0 <= z < 2^32.  Convert z to a word,  Z, and define Z = X +
          Y.
    
       c. The circular left shift operation S^n(X), where X is a word and n
          is an integer with 0 <= n < 32, is defined by
    
             S^n(X)  =  (X << n) OR (X >> 32-n).
    
          In the above, X << n is obtained as follows: discard the left-most
          n bits of X and then pad the result with n zeroes on the right
          (the result will still be 32 bits).  X >> n is obtained by
          discarding the right-most n bits of X and then padding the result
          with n zeroes on the left.  Thus S^n(X) is equivalent to a
          circular shift of X by n positions to the left.
    
    4. Message Padding
    
       SHA-1 is used to compute a message digest for a message or data file
       that is provided as input.  The message or data file should be
       considered to be a bit string.  The length of the message is the
       number of bits in the message (the empty message has length 0).  If
       the number of bits in a message is a multiple of 8, for compactness
       we can represent the message in hex.  The purpose of message padding
       is to make the total length of a padded message a multiple of 512.
       SHA-1 sequentially processes blocks of 512 bits when computing the
       message digest.  The following specifies how this padding shall be
       performed.  As a summary, a "1" followed by m "0"s followed by a 64-
       bit integer are appended to the end of the message to produce a
       padded message of length 512 * n.  The 64-bit integer is the length
       of the original message.  The padded message is then processed by the
       SHA-1 as n 512-bit blocks.
    
    
    
    Eastlake & Jones             Informational                      [Page 4]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
       Suppose a message has length l < 2^64.  Before it is input to the
       SHA-1, the message is padded on the right as follows:
    
       a. "1" is appended.  Example: if the original message is "01010000",
          this is padded to "010100001".
    
       b. "0"s are appended.  The number of "0"s will depend on the original
          length of the message.  The last 64 bits of the last 512-bit block
          are reserved
    
          for the length l of the original message.
    
          Example:  Suppose the original message is the bit string
    
             01100001 01100010 01100011 01100100 01100101.
    
          After step (a) this gives
    
             01100001 01100010 01100011 01100100 01100101 1.
    
          Since l = 40, the number of bits in the above is 41 and 407 "0"s
          are appended, making the total now 448.  This gives (in hex)
    
             61626364 65800000 00000000 00000000
             00000000 00000000 00000000 00000000
             00000000 00000000 00000000 00000000
             00000000 00000000.
    
       c. Obtain the 2-word representation of l, the number of bits in the
          original message.  If l < 2^32 then the first word is all zeroes.
          Append these two words to the padded message.
    
          Example: Suppose the original message is as in (b).  Then l = 40
          (note that l is computed before any padding).  The two-word
          representation of 40 is hex 00000000 00000028.  Hence the final
          padded message is hex
    
             61626364 65800000 00000000 00000000
             00000000 00000000 00000000 00000000
             00000000 00000000 00000000 00000000
             00000000 00000000 00000000 00000028.
    
          The padded message will contain 16 * n words for some n > 0.
          The padded message is regarded as a sequence of n blocks M(1) ,
          M(2), first characters (or bits) of the message.
    
    
    Eastlake & Jones             Informational                      [Page 5]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    5. Functions and Constants Used
    
       A sequence of logical functions f(0), f(1),..., f(79) is used in
       SHA-1.  Each f(t), 0 <= t <= 79, operates on three 32-bit words B, C,
       D and produces a 32-bit word as output.  f(t;B,C,D) is defined as
       follows: for words B, C, D,
    
          f(t;B,C,D) = (B AND C) OR ((NOT B) AND D)         ( 0 <= t <= 19)
    
          f(t;B,C,D) = B XOR C XOR D                        (20 <= t <= 39)
    
          f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D)  (40 <= t <= 59)
    
          f(t;B,C,D) = B XOR C XOR D                        (60 <= t <= 79).
    
       A sequence of constant words K(0), K(1), ... , K(79) is used in the
       SHA-1.  In hex these are given by
    
          K(t) = 5A827999         ( 0 <= t <= 19)
    
          K(t) = 6ED9EBA1         (20 <= t <= 39)
    
          K(t) = 8F1BBCDC         (40 <= t <= 59)
    
          K(t) = CA62C1D6         (60 <= t <= 79).
    
    6. Computing the Message Digest
    
       The methods given in 6.1 and 6.2 below yield the same message digest.
       Although using method 2 saves sixty-four 32-bit words of storage, it
       is likely to lengthen execution time due to the increased complexity
       of the address computations for the { W[t] } in step (c).  There are
       other computation methods which give identical results.
    
    6.1 Method 1
    
       The message digest is computed using the message padded as described
       in section 4.  The computation is described using two buffers, each
       consisting of five 32-bit words, and a sequence of eighty 32-bit
       words.  The words of the first 5-word buffer are labeled A,B,C,D,E.
       The words of the second 5-word buffer are labeled H0, H1, H2, H3, H4.
       The words of the 80-word sequence are labeled W(0), W(1),..., W(79).
       A single word buffer TEMP is also employed.
    
       To generate the message digest, the 16-word blocks M(1), M(2),...,
       M(n) defined in section 4 are processed in order.  The processing of
       each M(i) involves 80 steps.
    
    
    
    
    Eastlake & Jones             Informational                      [Page 6]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
       Before processing any blocks, the H's are initialized as follows: in
       hex,
    
          H0 = 67452301
    
          H1 = EFCDAB89
    
          H2 = 98BADCFE
    
          H3 = 10325476
    
          H4 = C3D2E1F0.
    
       Now M(1), M(2), ... , M(n) are processed.  To process M(i), we
       proceed as follows:
    
          a. Divide M(i) into 16 words W(0), W(1), ... , W(15), where W(0)
             is the left-most word.
    
          b. For t = 16 to 79 let
    
             W(t) = S^1(W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)).
    
          c. Let A = H0, B = H1, C = H2, D = H3, E = H4.
    
          d. For t = 0 to 79 do
    
             TEMP = S^5(A) + f(t;B,C,D) + E + W(t) + K(t);
    
             E = D;  D = C;  C = S^30(B);  B = A; A = TEMP;
    
          e. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
             + E.
    
       After processing M(n), the message digest is the 160-bit string
       represented by the 5 words
    
             H0 H1 H2 H3 H4.
    
    6.2 Method 2
    
       The method above assumes that the sequence W(0), ... , W(79) is
       implemented as an array of eighty 32-bit words.  This is efficient
       from the standpoint of minimization of execution time, since the
       addresses of W(t-3), ...  ,W(t-16) in step (b) are easily computed.
       If space is at a premium, an alternative is to regard { W(t) } as a
    
    
    Eastlake & Jones             Informational                      [Page 7]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
       circular queue, which may be implemented using an array of sixteen
       32-bit words W[0], ... W[15].  In this case, in hex let
    
       MASK = 0000000F.  Then processing of M(i) is as follows:
    
          a. Divide M(i) into 16 words W[0], ... , W[15], where W[0] is the
             left-most word.
    
          b. Let A = H0, B = H1, C = H2, D = H3, E = H4.
    
          c. For t = 0 to 79 do
    
             s = t AND MASK;
    
             if (t >= 16) W[s] = S^1(W[(s + 13) AND MASK] XOR W[(s + 8) AND
             MASK] XOR W[(s + 2) AND MASK] XOR W[s]);
    
             TEMP = S^5(A) + f(t;B,C,D) + E + W[s] + K(t);
    
             E = D; D = C; C = S^30(B); B = A; A = TEMP;
    
          d. Let H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4
             + E.
    
    7. C Code
    
       Below is a demonstration implementation of SHA-1 in C.  Section 7.1
       contains the header file, 7.2 the C code, and 7.3 a test driver.
    
    7.1 .h file
    
    /*
     *  sha1.h
     *
     *  Description:
     *      This is the header file for code which implements the Secure
     *      Hashing Algorithm 1 as defined in FIPS PUB 180-1 published
     *      April 17, 1995.
     *
     *      Many of the variable names in this code, especially the
     *      single character names, were used because those were the names
     *      used in the publication.
     *
     *      Please read the file sha1.c for more information.
     *
     */
    
    
    
    Eastlake & Jones             Informational                      [Page 8]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    #ifndef _SHA1_H_
    #define _SHA1_H_
    
    #include <stdint.h>
    /*
     * If you do not have the ISO standard stdint.h header file, then you
     * must typdef the following:
     *    name              meaning
     *  uint32_t         unsigned 32 bit integer
     *  uint8_t          unsigned 8 bit integer (i.e., unsigned char)
     *  int_least16_t    integer of >= 16 bits
     *
     */
    
    #ifndef _SHA_enum_
    #define _SHA_enum_
    enum
    {
        shaSuccess = 0,
        shaNull,            /* Null pointer parameter */
        shaInputTooLong,    /* input data too long */
        shaStateError       /* called Input after Result */
    };
    #endif
    #define SHA1HashSize 20
    
    /*
     *  This structure will hold context information for the SHA-1
     *  hashing operation
     */
    typedef struct SHA1Context
    {
        uint32_t Intermediate_Hash[SHA1HashSize/4]; /* Message Digest  */
    
        uint32_t Length_Low;            /* Message length in bits      */
        uint32_t Length_High;           /* Message length in bits      */
    
                                   /* Index into message block array   */
        int_least16_t Message_Block_Index;
        uint8_t Message_Block[64];      /* 512-bit message blocks      */
    
        int Computed;               /* Is the digest computed?         */
        int Corrupted;             /* Is the message digest corrupted? */
    } SHA1Context;
    
    /*
     *  Function Prototypes
     */
    
    
    
    Eastlake & Jones             Informational                      [Page 9]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    int SHA1Reset(  SHA1Context *);
    int SHA1Input(  SHA1Context *,
                    const uint8_t *,
                    unsigned int);
    int SHA1Result( SHA1Context *,
                    uint8_t Message_Digest[SHA1HashSize]);
    
    #endif
    
    7.2 .c file
    
    /*
     *  sha1.c
     *
     *  Description:
     *      This file implements the Secure Hashing Algorithm 1 as
     *      defined in FIPS PUB 180-1 published April 17, 1995.
     *
     *      The SHA-1, produces a 160-bit message digest for a given
     *      data stream.  It should take about 2**n steps to find a
     *      message with the same digest as a given message and
     *      2**(n/2) to find any two messages with the same digest,
     *      when n is the digest size in bits.  Therefore, this
     *      algorithm can serve as a means of providing a
     *      "fingerprint" for a message.
     *
     *  Portability Issues:
     *      SHA-1 is defined in terms of 32-bit "words".  This code
     *      uses <stdint.h> (included via "sha1.h" to define 32 and 8
     *      bit unsigned integer types.  If your C compiler does not
     *      support 32 bit unsigned integers, this code is not
     *      appropriate.
     *
     *  Caveats:
     *      SHA-1 is designed to work with messages less than 2^64 bits
     *      long.  Although SHA-1 allows a message digest to be generated
     *      for messages of any number of bits less than 2^64, this
     *      implementation only works with messages with a length that is
     *      a multiple of the size of an 8-bit character.
     *
     */
    
    
    
    Eastlake & Jones             Informational                     [Page 10]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    #include "sha1.h"
    
    /*
     *  Define the SHA1 circular left shift macro
     */
    #define SHA1CircularShift(bits,word) 
                    (((word) << (bits)) | ((word) >> (32-(bits))))
    
    /* Local Function Prototyptes */
    void SHA1PadMessage(SHA1Context *);
    void SHA1ProcessMessageBlock(SHA1Context *);
    
    /*
     *  SHA1Reset
     *
     *  Description:
     *      This function will initialize the SHA1Context in preparation
     *      for computing a new SHA1 message digest.
     *
     *  Parameters:
     *      context: [in/out]
     *          The context to reset.
     *
     *  Returns:
     *      sha Error Code.
     *
     */
    int SHA1Reset(SHA1Context *context)
    {
        if (!context)
        {
            return shaNull;
        }
    
        context->Length_Low             = 0;
        context->Length_High            = 0;
        context->Message_Block_Index    = 0;
    
        context->Intermediate_Hash[0]   = 0x67452301;
        context->Intermediate_Hash[1]   = 0xEFCDAB89;
        context->Intermediate_Hash[2]   = 0x98BADCFE;
        context->Intermediate_Hash[3]   = 0x10325476;
        context->Intermediate_Hash[4]   = 0xC3D2E1F0;
    
        context->Computed   = 0;
        context->Corrupted  = 0;
    
    
    
    
    
    Eastlake & Jones             Informational                     [Page 11]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
        return shaSuccess;
    }
    
    /*
     *  SHA1Result
     *
     *  Description:
     *      This function will return the 160-bit message digest into the
     *      Message_Digest array  provided by the caller.
     *      NOTE: The first octet of hash is stored in the 0th element,
     *            the last octet of hash in the 19th element.
     *
     *  Parameters:
     *      context: [in/out]
     *          The context to use to calculate the SHA-1 hash.
     *      Message_Digest: [out]
     *          Where the digest is returned.
     *
     *  Returns:
     *      sha Error Code.
     *
     */
    int SHA1Result( SHA1Context *context,
                    uint8_t Message_Digest[SHA1HashSize])
    {
        int i;
    
        if (!context || !Message_Digest)
        {
            return shaNull;
        }
    
        if (context->Corrupted)
        {
            return context->Corrupted;
        }
    
        if (!context->Computed)
        {
            SHA1PadMessage(context);
            for(i=0; i<64; ++i)
            {
                /* message may be sensitive, clear it out */
                context->Message_Block[i] = 0;
            }
            context->Length_Low = 0;    /* and clear length */
            context->Length_High = 0;
            context->Computed = 1;
    
    
    
    Eastlake & Jones             Informational                     [Page 12]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
        }
    
        for(i = 0; i < SHA1HashSize; ++i)
        {
            Message_Digest[i] = context->Intermediate_Hash[i>>2]
                                >> 8 * ( 3 - ( i & 0x03 ) );
        }
    
        return shaSuccess;
    }
    
    /*
     *  SHA1Input
     *
     *  Description:
     *      This function accepts an array of octets as the next portion
     *      of the message.
     *
     *  Parameters:
     *      context: [in/out]
     *          The SHA context to update
     *      message_array: [in]
     *          An array of characters representing the next portion of
     *          the message.
     *      length: [in]
     *          The length of the message in message_array
     *
     *  Returns:
     *      sha Error Code.
     *
     */
    int SHA1Input(    SHA1Context    *context,
                      const uint8_t  *message_array,
                      unsigned       length)
    {
        if (!length)
        {
            return shaSuccess;
        }
    
        if (!context || !message_array)
        {
            return shaNull;
        }
    
        if (context->Computed)
        {
            context->Corrupted = shaStateError;
    
    
    
    Eastlake & Jones             Informational                     [Page 13]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
            return shaStateError;
        }
    
        if (context->Corrupted)
        {
             return context->Corrupted;
        }
        while(length-- && !context->Corrupted)
        {
        context->Message_Block[context->Message_Block_Index++] =
                        (*message_array & 0xFF);
    
        context->Length_Low += 8;
        if (context->Length_Low == 0)
        {
            context->Length_High++;
            if (context->Length_High == 0)
            {
                /* Message is too long */
                context->Corrupted = 1;
            }
        }
    
        if (context->Message_Block_Index == 64)
        {
            SHA1ProcessMessageBlock(context);
        }
    
        message_array++;
        }
    
        return shaSuccess;
    }
    
    /*
     *  SHA1ProcessMessageBlock
     *
     *  Description:
     *      This function will process the next 512 bits of the message
     *      stored in the Message_Block array.
     *
     *  Parameters:
     *      None.
     *
     *  Returns:
     *      Nothing.
     *
     *  Comments:
    
    
    
    Eastlake & Jones             Informational                     [Page 14]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
     *      Many of the variable names in this code, especially the
     *      single character names, were used because those were the
     *      names used in the publication.
     *
     *
     */
    void SHA1ProcessMessageBlock(SHA1Context *context)
    {
        const uint32_t K[] =    {       /* Constants defined in SHA-1   */
                                0x5A827999,
                                0x6ED9EBA1,
                                0x8F1BBCDC,
                                0xCA62C1D6
                                };
        int           t;                 /* Loop counter                */
        uint32_t      temp;              /* Temporary word value        */
        uint32_t      W[80];             /* Word sequence               */
        uint32_t      A, B, C, D, E;     /* Word buffers                */
    
        /*
         *  Initialize the first 16 words in the array W
         */
        for(t = 0; t < 16; t++)
        {
            W[t] = context->Message_Block[t * 4] << 24;
            W[t] |= context->Message_Block[t * 4 + 1] << 16;
            W[t] |= context->Message_Block[t * 4 + 2] << 8;
            W[t] |= context->Message_Block[t * 4 + 3];
        }
    
        for(t = 16; t < 80; t++)
        {
           W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
        }
    
        A = context->Intermediate_Hash[0];
        B = context->Intermediate_Hash[1];
        C = context->Intermediate_Hash[2];
        D = context->Intermediate_Hash[3];
        E = context->Intermediate_Hash[4];
    
        for(t = 0; t < 20; t++)
        {
            temp =  SHA1CircularShift(5,A) +
                    ((B & C) | ((~B) & D)) + E + W[t] + K[0];
            E = D;
            D = C;
            C = SHA1CircularShift(30,B);
    
    
    
    Eastlake & Jones             Informational                     [Page 15]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
            B = A;
            A = temp;
        }
    
        for(t = 20; t < 40; t++)
        {
            temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
            E = D;
            D = C;
            C = SHA1CircularShift(30,B);
            B = A;
            A = temp;
        }
    
        for(t = 40; t < 60; t++)
        {
            temp = SHA1CircularShift(5,A) +
                   ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
            E = D;
            D = C;
            C = SHA1CircularShift(30,B);
            B = A;
            A = temp;
        }
    
        for(t = 60; t < 80; t++)
        {
            temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
            E = D;
            D = C;
            C = SHA1CircularShift(30,B);
            B = A;
            A = temp;
        }
    
        context->Intermediate_Hash[0] += A;
        context->Intermediate_Hash[1] += B;
        context->Intermediate_Hash[2] += C;
        context->Intermediate_Hash[3] += D;
        context->Intermediate_Hash[4] += E;
    
        context->Message_Block_Index = 0;
    }
    
    
    /*
     *  SHA1PadMessage
     *
    
    
    
    Eastlake & Jones             Informational                     [Page 16]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
     *  Description:
     *      According to the standard, the message must be padded to an even
     *      512 bits.  The first padding bit must be a '1'.  The last 64
     *      bits represent the length of the original message.  All bits in
     *      between should be 0.  This function will pad the message
     *      according to those rules by filling the Message_Block array
     *      accordingly.  It will also call the ProcessMessageBlock function
     *      provided appropriately.  When it returns, it can be assumed that
     *      the message digest has been computed.
     *
     *  Parameters:
     *      context: [in/out]
     *          The context to pad
     *      ProcessMessageBlock: [in]
     *          The appropriate SHA*ProcessMessageBlock function
     *  Returns:
     *      Nothing.
     *
     */
    
    void SHA1PadMessage(SHA1Context *context)
    {
        /*
         *  Check to see if the current message block is too small to hold
         *  the initial padding bits and length.  If so, we will pad the
         *  block, process it, and then continue padding into a second
         *  block.
         */
        if (context->Message_Block_Index > 55)
        {
            context->Message_Block[context->Message_Block_Index++] = 0x80;
            while(context->Message_Block_Index < 64)
            {
                context->Message_Block[context->Message_Block_Index++] = 0;
            }
    
            SHA1ProcessMessageBlock(context);
    
            while(context->Message_Block_Index < 56)
            {
                context->Message_Block[context->Message_Block_Index++] = 0;
            }
        }
        else
        {
            context->Message_Block[context->Message_Block_Index++] = 0x80;
            while(context->Message_Block_Index < 56)
            {
    
    
    
    Eastlake & Jones             Informational                     [Page 17]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
                context->Message_Block[context->Message_Block_Index++] = 0;
            }
        }
    
        /*
         *  Store the message length as the last 8 octets
         */
        context->Message_Block[56] = context->Length_High >> 24;
        context->Message_Block[57] = context->Length_High >> 16;
        context->Message_Block[58] = context->Length_High >> 8;
        context->Message_Block[59] = context->Length_High;
        context->Message_Block[60] = context->Length_Low >> 24;
        context->Message_Block[61] = context->Length_Low >> 16;
        context->Message_Block[62] = context->Length_Low >> 8;
        context->Message_Block[63] = context->Length_Low;
    
        SHA1ProcessMessageBlock(context);
    }
    
    7.3 Test Driver
    
       The following code is a main program test driver to exercise the code
       in sha1.c.
    
    /*
     *  sha1test.c
     *
     *  Description:
     *      This file will exercise the SHA-1 code performing the three
     *      tests documented in FIPS PUB 180-1 plus one which calls
     *      SHA1Input with an exact multiple of 512 bits, plus a few
     *      error test checks.
     *
     *  Portability Issues:
     *      None.
     *
     */
    
    #include <stdint.h>
    #include <stdio.h>
    #include <string.h>
    #include "sha1.h"
    
    /*
     *  Define patterns for testing
     */
    #define TEST1   "abc"
    #define TEST2a  "abcdbcdecdefdefgefghfghighijhi"
    
    
    
    Eastlake & Jones             Informational                     [Page 18]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    #define TEST2b  "jkijkljklmklmnlmnomnopnopq"
    #define TEST2   TEST2a TEST2b
    #define TEST3   "a"
    #define TEST4a  "01234567012345670123456701234567"
    #define TEST4b  "01234567012345670123456701234567"
        /* an exact multiple of 512 bits */
    #define TEST4   TEST4a TEST4b
    char *testarray[4] =
    {
        TEST1,
        TEST2,
        TEST3,
        TEST4
    };
    long int repeatcount[4] = { 1, 1, 1000000, 10 };
    char *resultarray[4] =
    {
        "A9 99 3E 36 47 06 81 6A BA 3E 25 71 78 50 C2 6C 9C D0 D8 9D",
        "84 98 3E 44 1C 3B D2 6E BA AE 4A A1 F9 51 29 E5 E5 46 70 F1",
        "34 AA 97 3C D4 C4 DA A4 F6 1E EB 2B DB AD 27 31 65 34 01 6F",
        "DE A3 56 A2 CD DD 90 C7 A7 EC ED C5 EB B5 63 93 4F 46 04 52"
    };
    
    int main()
    {
        SHA1Context sha;
        int i, j, err;
        uint8_t Message_Digest[20];
    
        /*
         *  Perform SHA-1 tests
         */
        for(j = 0; j < 4; ++j)
        {
            printf( "
    Test %d: %d, '%s'
    ",
                    j+1,
                    repeatcount[j],
                    testarray[j]);
    
            err = SHA1Reset(&sha);
            if (err)
            {
                fprintf(stderr, "SHA1Reset Error %d.
    ", err );
                break;    /* out of for j loop */
            }
    
            for(i = 0; i < repeatcount[j]; ++i)
            {
    
    
    
    Eastlake & Jones             Informational                     [Page 19]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
                err = SHA1Input(&sha,
                      (const unsigned char *) testarray[j],
                      strlen(testarray[j]));
                if (err)
                {
                    fprintf(stderr, "SHA1Input Error %d.
    ", err );
                    break;    /* out of for i loop */
                }
            }
    
            err = SHA1Result(&sha, Message_Digest);
            if (err)
            {
                fprintf(stderr,
                "SHA1Result Error %d, could not compute message digest.
    ",
                err );
            }
            else
            {
                printf("	");
                for(i = 0; i < 20 ; ++i)
                {
                    printf("%02X ", Message_Digest[i]);
                }
                printf("
    ");
            }
            printf("Should match:
    ");
            printf("	%s
    ", resultarray[j]);
        }
    
        /* Test some error returns */
        err = SHA1Input(&sha,(const unsigned char *) testarray[1], 1);
        printf ("
    Error %d. Should be %d.
    ", err, shaStateError );
        err = SHA1Reset(0);
        printf ("
    Error %d. Should be %d.
    ", err, shaNull );
        return 0;
    }
    
    8. Security Considerations
    
       This document is intended to provide convenient open source access by
       the Internet community to the United States of America Federal
       Information Processing Standard Secure Hash Function SHA-1 [FIPS
       180-1].  No independent assertion of the security of this hash
       function by the authors for any particular use is intended.
    
    
    Eastlake & Jones             Informational                     [Page 20]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    References
    
       [FIPS 180-1] "Secure Hash Standard", United States of American,
                    National Institute of Science and Technology, Federal
                    Information Processing Standard (FIPS) 180-1, April
                    1993.
    
       [MD4]        "The MD4 Message Digest Algorithm," Advances in
                    Cryptology - CRYPTO '90 Proceedings, Springer-Verlag,
                    1991, pp. 303-311.
    
       [RFC 1320]   Rivest, R., "The MD4 Message-Digest Algorithm", RFC
                    1320, April 1992.
    
       [RFC 1321]   Rivest, R., "The MD5 Message-Digest Algorithm", RFC
                    1321, April 1992.
    
       [RFC 1750]   Eastlake, D., Crocker, S. and J. Schiller, "Randomness
                    Requirements for Security", RFC 1750, December 1994.
    
    Authors' Addresses
    
       Donald E. Eastlake, 3rd
       Motorola
       155 Beaver Street
       Milford, MA 01757 USA
    
       Phone:   +1 508-634-2066 (h)
                +1 508-261-5434 (w)
       Fax:     +1 508-261-4777
       EMail:   Donald.Eastlake@motorola.com
    
    
       Paul E. Jones
       Cisco Systems, Inc.
       7025 Kit Creek Road
       Research Triangle Park, NC 27709 USA
    
       Phone:   +1 919 392 6948
       EMail:   paulej@packetizer.com
    
    Eastlake & Jones             Informational                     [Page 21]
    
    RFC 3174           US Secure Hash Algorithm 1 (SHA1)      September 2001
    
    
    Full Copyright Statement
    
       Copyright (C) The Internet Society (2001).  All Rights Reserved.
    
       This document and translations of it may be copied and furnished to
       others, and derivative works that comment on or otherwise explain it
       or assist in its implementation may be prepared, copied, published
       and distributed, in whole or in part, without restriction of any
       kind, provided that the above copyright notice and this paragraph are
       included on all such copies and derivative works.  However, this
       document itself may not be modified in any way, such as by removing
       the copyright notice or references to the Internet Society or other
       Internet organizations, except as needed for the purpose of
       developing Internet standards in which case the procedures for
       copyrights defined in the Internet Standards process must be
       followed, or as required to translate it into languages other than
       English.
    
       The limited permissions granted above are perpetual and will not be
       revoked by the Internet Society or its successors or assigns.
    
       This document and the information contained herein is provided on an
       "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
       TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
       BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
       HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
       MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
    
    Acknowledgement
    
       Funding for the RFC Editor function is currently provided by the
       Internet Society.
    
    Eastlake & Jones             Informational                     [Page 22]
    

    ======================文档信息===========================

    版权声明:非商用自由转载-保持署名-注明出处

    署名(BY) :testcs_dn(微wx笑)

    文章出处:[无知人生。记录点滴](http://blog.csdn.net/testcs_dn)

  • 相关阅读:
    【转】 VC MFC 钩子 实现 自绘 窗体 标题栏 非客户区
    Scintilla开源库使用指南(二)
    Scintilla开源库使用指南(一)
    【转】MFC 多文档
    多视图识别
    获得MFC窗口其它类指针的方法
    sql2005 查看数据库或表大小的系统存储过程 sp_spaceused
    哪里是乐土?关于团队良性循环 (转)
    项目管理反思——前言
    项目经理思考——团队
  • 原文地址:https://www.cnblogs.com/jzssuanfa/p/6785543.html
Copyright © 2020-2023  润新知