Description
详见OJ
Solution
这题看题目就知道是期望(DP)了。
先刚了2h(DP)式,得到(f[i]=f[i-1]+f[i-2]+f[i-1]*(1-p)+...),然后不会化简,最后崩盘。
正解也是设f[i]表示生成第i级的剑的期望费用。
可以得到(f[i] = f[i - 1] + f[i - 2] + (1 - p) * (f[i] - f[i - 2]))
解方程即可,得到:
[f[i] = f[i - 2] + f[i - 1] * (k/c[i - 1])]((k)为题目所给的(k))
要用逆元(考场逆元直接用成了(/(k!)),而需要的是(/k)。。。)
[f[i] = f[i - 2] + f[i - 1] * k * ny[c[i - 1]] * jc[c[i - 1] - 1]]
此题需要卡常!!!
Code
#include <cstdio>
#include <algorithm>
#define N 10000010
#define ll long long
#define mo 998244353
#define fo(x, a, b) for (register int x = a; x <= b; x++)
#define fd(x, a, b) for (register int x = a; x >= b; x--)
using namespace std;
const int maxn = 10000000;
int n, A, bx, by, cx, cy, p, k;
int b[N], c[N], f[N], jc[N], ny[N];
inline int read()
{
int x = 0; char c = getchar();
while (c < '0' || c > '9') c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return x;
}
int ksm(int x, int y)
{
int s = 1;
while (y)
{
if (y & 1) s = (ll)s * x % mo;
x = (ll)x * x % mo; y >>= 1;
}
return s;
}
void ycl()
{
jc[0] = jc[1] = 1;
fo(i, 2, maxn) jc[i] = (ll)jc[i - 1] * i % mo;
ny[maxn] = ksm(jc[maxn], mo - 2);
fd(i, maxn - 1, 1) ny[i] = (ll)ny[i + 1] * (i + 1) % mo;
}
int main()
{
freopen("forging.in", "r", stdin);
freopen("forging.out", "w", stdout);
n = read(), A = read();
if (n == 0) {printf("%d
", A); return 0;} ycl();
bx = read(), by = read(), cx = read(), cy = read(), p = read();
b[0] = by + 1, c[0] = cy + 1;
fo(i, 1, n - 1)
{
b[i] = ((ll)b[i - 1] * bx + by) % p + 1;
c[i] = ((ll)c[i - 1] * cx + cy) % p + 1;
}
f[0] = A; k = std::min(c[0], b[0]);
f[1] = (f[0] + (ll)f[0] * c[0] % mo * ny[k] % mo * jc[k - 1] % mo) % mo;
fo(i, 2, n)
{
k = std::min(c[i - 1], b[i - 2]);
f[i] = (f[i - 2] + (ll)f[i - 1] * c[i - 1] % mo * ny[k] % mo * jc[k - 1] % mo) % mo;
}
printf("%d
", f[n]);
return 0;
}