题目
题目大意
给你一棵树,对于每一条边,求删去这条边之后,再用一条边(自己定)连接两个连通块,形成的树的直径最小是多少。
正解
首先,将这棵树的直径给找出来。显然,如果删去的边不在直径上,那么答案就是直径。
接下来考虑删去的边在直径上的情况。
自己连的边应该要是两棵树的直径的中点(中点就是直径上到端点最大距离最小的点)。
答案就是两棵树的直径的一半(当然这是粗略的说法)加上边权,和两棵树内部的直径长度的最大值。
设直径端点为(S)和(T),现在想象直径是横过来的一条线,有一堆树挂在上面。
在直径上从左到右枚举删去哪条边,顺带着维护中点在哪里。
有个结论:中点肯定在原来的直径上。
(后面都以(S)的一边为例,显然另一边是一样的)
反证法,设中点为(x),(x)不在直径上。设(y)为(x)到(S)路径上第一个出现在直径上的点。
现在找最远的点(z)。
如果(z)在(y)子树之外,那么路径就是(x)到(y)和(y)到(z)的距离。这时候如果要使(y)到(z)最大,则(z=S)。这时候将(x)变成(y)更优。
如果(z)在(x)子树之内,那么(x)到(z)的距离比(x)到(S)的距离长,与假设矛盾。
如果(z)在(y)子树之内,在(x)子树之外,那么(y)到(z)的距离比(y)到(S)的距离长,矛盾。
接下来考虑如何维护直径。
在原来的直径上,对于每个节点,预处理出(f_x)表示(x)子树中最远点到(x)的长度。
设(disS_x)为(x)到(S)的距离。
显然,新的直径的一个端点是(S)。直径可以分成在原来直径上和在某棵子树内的两段。
设(x)为直径的拐点,则直径的长度为(disS_x+f_x)
设(a)为直径的中点,则直径一半的长度(形象的说法)为(max(disS_a,disS_x+f_x-disS_a))
现在被删去的边在原来的直径上从左往右移动,每个拐点都能搞出一条路径。在这些路径中找长度最大的,作为直径,然后(a)移动到(max(disS_a,disS_x+f_x-disS_a))最小的地方,这时候(a)就求出来了。
在这个过程中,我们发现(a)只会从(S)向(T)移动。
所以直接(O(n))做就可以了(题解说要单调队列,但实际上完全不用。具体见代码。)
代码
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2000010
#define ll long long
int n;
struct EDGE{
int to,w,num;
EDGE *las;
} e[N*2],*last[N];
int ne;
unsigned long long num;
unsigned long long get(){
num^=(num<<13);
num^=(num>>17);
num^=(num<<5);
return num;
}
void gen(){
int B,D;
scanf("%d%llu%d%d",&n,&num,&B,&D);
for(int i=2;i<=n;i++){
int a=get()%min(i-1,B)+i-min(i-1,B),b=get()%D;
e[ne]={a,b,i-1,last[i]};
last[i]=e+ne++;
e[ne]={i,b,i-1,last[a]};
last[a]=e+ne++;
}
}
ll ans[N];
int q[N];
ll ds[N],dt[N],alen;
int S,T,pre[N],suc[N];
EDGE *et[N];
void init(){
static int vis[N];
int BZ,h,t;
vis[1]=BZ=1;
q[h=t=1]=1;
ll *dis=ds;
dis[1]=0;
while (h<=t){
int x=q[h++],y;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (vis[y]!=BZ){
vis[y]=BZ;
dis[y]=dis[x]+ei->w;
q[++t]=y;
}
}
}
S=1;
for (int i=1;i<=n;++i)
if (dis[i]>dis[S])
S=i;
q[h=t=1]=S;
vis[S]=++BZ;
dis[S]=0;
while (h<=t){
int x=q[h++],y;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (vis[y]!=BZ){
vis[y]=BZ;
dis[y]=dis[x]+ei->w;
pre[y]=x;
et[y]=ei;
q[++t]=y;
}
}
}
T=S;
for (int i=1;i<=n;++i)
if (dis[i]>dis[T])
T=i;
for (int i=T;i!=S;i=pre[i])
suc[pre[i]]=i;
suc[T]=0;
for (int i=1;i<=n;++i)
if (!suc[i] && i!=T)
pre[i]=0;
}
ll f[N];
int fa[N];
void dp1(int rt){
int h,t;
q[h=t=1]=rt;
fa[rt]=0;
while (h<=t){
int x=q[h++],y;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (y!=pre[rt] && y!=suc[rt] && y!=fa[x]){
ans[ei->num]=alen;
fa[y]=x;
q[++t]=y;
}
}
}
for (int i=t;i>=1;--i){
int x=q[i],y;
f[x]=0;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (y!=pre[rt] && y!=suc[rt] && y!=fa[x])
f[x]=max(f[x],f[y]+ei->w);
}
}
}
ll gs[N],gt[N];
void dp2(int rt,int *cant,ll *g){
int h,t;
q[h=t=1]=rt;
fa[rt]=0;
while (h<=t){
int x=q[h++],y;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (y!=cant[x] && y!=fa[x]){
fa[y]=x;
q[++t]=y;
}
}
}
for (int i=t;i>=1;--i){
int x=q[i],y;
ll fmx=0,smx=0;
f[x]=0;
g[x]=0;
for (EDGE *ei=last[x];ei;ei=ei->las){
y=ei->to;
if (y!=cant[x] && y!=fa[x]){
g[x]=max(g[x],g[y]);
if (f[y]+ei->w>fmx)
smx=fmx,fmx=f[y]+ei->w;
else if (f[y]+ei->w>smx)
smx=f[y]+ei->w;
}
}
f[x]=fmx;
g[x]=max(g[x],fmx+smx);
}
}
ll hs[N],ht[N];
void calc(int beg,int end,int *nxt,ll *h,ll *dis){
int a=beg,mx=beg;
h[beg]=f[beg];
for (int x=nxt[beg];x!=end;x=nxt[x]){
if (dis[x]+f[x]>dis[mx]+f[mx]){
mx=x;
while (a!=x && max(dis[nxt[a]],dis[mx]+f[mx]-dis[nxt[a]])<max(dis[a],dis[mx]+f[mx]-dis[a]))
a=nxt[a];
}
h[x]=max(dis[a],dis[mx]+f[mx]-dis[a]);
}
}
int main(){
freopen("path.in","r",stdin);
freopen("path.out","w",stdout);
gen();
init();
alen=ds[T];
dp2(T,suc,gs),dp2(S,pre,gt);
for (int i=S;i;i=suc[i])
dt[i]=alen-ds[i],dp1(i);
calc(S,T,suc,hs,ds);
calc(T,S,pre,ht,dt);
for (int i=S;i!=T;i=suc[i])
ans[et[suc[i]]->num]=max(max(gs[i],gt[suc[i]]),hs[i]+ht[suc[i]]+et[suc[i]]->w);
ll s=0;
for (int i=1;i<n;++i)
s^=ans[i]%998244353*i%998244353;
printf("%lld
",s);
return 0;
}
总结
论猜结论的重要性……