首先,在写这篇博客之前,我还没有完全学会FFT。
先把会的部分打好,加深一下记忆(也可以说是做笔记吧)。
初三了,还不会FFT,要退役喽……
多项式乘法
点开这篇博客之前,你就应该知道,FFT是用来求多项式乘法的。
什么是多项式,什么是多项式乘法?
不讲。初一内容。
如果要求多项式乘法,有一个非常显然的做法,就是暴力。
时间复杂度是的,很朴素。
然而FFT这个东西可以将其复杂度优化到。
点值表示法
对s于一个多项式,最朴素的表示方法长这样:
然后,有另一种点值表示法,就是用个点来表示。
对于一个点,可以理解成,将带入多项式中,求得的结果是。
其实这个点不一定是真实存在的,因为在FFT中我们用的是复数……
那么,我们可以通过这个点的坐标,然后推出原来的式子。
证明?我觉得这个感性理解一下就好了。
可以看作用个点,定一个次函数。
然后,对于两个多项式相乘,假设两个点为和
那么它们相乘的结果就是
这个其实也挺好理解,因为这些多项式可以看成函数。
算法的大概流程
一、点值运算
就是将多项式的形式转化成点值表示法。
二、逐项相乘
三、插值运算
将多项式由点值表示法转化回去。
次单位根
定义
有一个方程:
这个方程,人们看到了,肯定会毫不犹豫地想到。如果是偶数,还可以是。
但是,如果我们把范围延伸到复数,那么,就有个根。
我们可以画一个图看一下。
(图片摘自YL的PPT。吐槽一下,为什么和我认识的顺序相反?不过……也没有多大关系,本质上是一样的。)
我们可以发现,这些根围成了一个圆。
这个圆被划分成了等分。
那么它们究竟是多少呢?
首先,
我说一说复数的乘法:
对于一个复数,其实有另一种写法:
这种写法被称为三角表示法,可以用图形理解一下,
叫模长,表示这个点到原点的距离。
是原点发出经过它的射线和洲的正半轴的夹角(逆时针)。
然后,对于两个复数相乘,就相当于是模长相乘,夹角相加。
证明?我不会证。
当初,在某一位大佬讲FFT时,我问怎么证,他简单地化了一下式子,我问最后一步是为什么,怎么证。他说,很简单,用泰勒级数展开就行了。
我:……
总之就这么用就好了。
那么我们可以发现,如果模长都为,乘起来是不会变的,只是夹角相加。所以有的时候,它会在转若干次的时候转到。
所以说,我们可以发现上面的这些点统统可以用来表示。
因为它们围成了一个圆,上一个绕着原点转到某一个固定的角度,就得到下一个。从开始,转次,就会回来。
我们记,为主次单位根。
性质
1.群的性质
这条性质比较显然。因为。
也可以通过图来理解一下。
2.消去引理
这个东西也可以通过图来理解一下。
3.折半引理
这个东西还是可以画图理解一下,当然其实也很好证明。
只需要将等式的两边分别平方一下,易得它们的平方相等。
又显然它们不相等(嗯,的确显然)
所以它们一定互为相反数。
好草率的证明啊……
4.求和引理:时,否则
这个有点复杂,当然,也仅仅是有点复杂……
等比数列求和在复数显然也适用,所以我们直接简单粗暴地强行搬过来:
用处
用处?
多亏了它奇怪的性质,所以才可以用来玩FFT。
这个性质有什么用,看看后面就知道了。
据说,NTT似乎和FFT的原理差不多,只不过用的是某些模数的特殊性质。所以常数很小。
DFT
先不要说FFT,从简单的入手。
之前说过这个东西是用来将普通的性质转换成点值表示法。
我们可以将带入,
得到。
显然,
IDFT
再讲
我们现在已经知道了的DFT为
我们再设。
我们将带入,又得到一个DFT:
然后推一波式子:
其中最后一步用了前面所说的求和引理。
所以
你们现在说,为什么要用这些奇奇怪怪的次单位根?如果没有这些奇妙的性质,那么在这时候转换就很不方便了。
我们发现,DFT和IDFT的求法实际上是差不多的(可以套用同一个板子),只是要带进去的东西不同。
FFT
其实FFT是DFT的优化。
DFT的时间复杂度是的,很慢(人家傅里叶才懒得帮你算时间复杂度呢!)。
所以我们可以用分治的方法来将其优化到
对于一个多项式,我们考虑用分治的方式来计算它的DFT。
设
那么我们可以得到
设,则
我们可以递归地求下去,每次将其分成两半。那么这样子显然是的。
(当然,在一开始就要将补成2次幂的形式,不然会出现不能分成两个相等的部分的尴尬情况。)
FFT的常数优化
如果真的像上面一样递归处理,那就T飞了。
常数太大了啊!
所以说,我们要对它进行优化。
FFT中位置的变换
设一开始的编号为0,1,2,3,4,5,6,7
,变换后的编号为0,4,2,6,1,5,3,7
可以将所有的东西用二进制来搞一搞,然后你就会发现:
对应的位置的二进制形式居然是相反的!
是不是很神奇?
接下来我来简略的证明一下(当然还是感性理解):
每一次将一大块的东西分成两个小块分别处理。
这时候相当于将编号的第位为的放左边,为的放右边。
可以思考一下,如果将这个新的顺序重新编号,那么,左边的最高位都是,右边的最高位都是。
所以相当于是最低位和最高位换了一下。
然后再递归向下处理,后面的东西也是一样的。
其实还挺理性的,不是吗?
那么我们可以通过这个结论,来搞一个自底向上的算法,然后就不需要递归,多么舒服!
蝴蝶变换
好高大上的一个名字,是不是?
但实际上,它就是我们再前面讲过的东西:
可以发现,对于左边的两个东西,转移到它们的两个量是可以一起用的。
如果你画一张图来理解一下,那么你就会发现,这个东西真的很像蝴蝶。
真的好像哟……
这个东西在程序实现的时候直接用上就好了。
在我的印象中,蝴蝶变换本来就是FFT的转移,所以告诉我,为什么还有不用蝴蝶变换的非递归FFT程序?可能是我智商太低,理解不了更差的解法(手动滑稽)。
补充
二进制形式相反的怎么弄?
不要想得太多,直接预处理,暴力不会爆炸。
时间复杂度还是一样的……
主次单位根怎么算?
数形结合……
因为这个半径为的圆被划成了等分。
所以每个角就是。
那么。
这是一种比较好理解的方法。
但是还有一种很变态,很奇怪,很强大的方法:
这是什么鬼???
据说脑洞数学家欧拉,他研究出来这么一个玩意:
所以说对吧……
可是原理是什么……还有,如果直接打上这种东西,那么你要用C++自带的<complex>
啊!
复数的实现
刚刚还提起过,C++自带了一个叫<complex>
的库。
其实自己重载运算符打得更加舒服……吧!
至少我相信手打绝对比自带的快!
注意精度问题
这个不用说了吧……
代码实现(易懂&常数大版)
using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 1000000
#define PI 3.14159265358979
struct com{
double a,b;
com(double _a=0,double _b=0){a=_a,b=_b;}
};
inline com operator+(const com &x,const com &y){return com(x.a+y.a,x.b+y.b);}
inline com operator-(const com &x,const com &y){return com(x.a-y.a,x.b-y.b);}
inline com operator*(const com &x,const com &y){return com(x.a*y.a-x.b*y.b,x.a*y.b+x.b*y.a);}
inline com operator/(const com &x,const double y){return com(x.a/y,x.b/y);}
int n,m,an,bn;
com a[1<<21],b[1<<21],c[1<<21];
int re[1<<21];
inline void init();
inline void fft(com*,int);
int main(){
scanf("%d%d",&an,&bn);
for (int i=0;i<=an;++i){
int tmp;
scanf("%d",&tmp);
a[i]=com(tmp,0);
}
for (int i=0;i<=bn;++i){
int tmp;
scanf("%d",&tmp);
b[i]=com(tmp,0);
}
for (n=1,m=0;n<=an+bn;n<<=1,m++);//开够足够的n
init();
fft(a,1);
fft(b,1);
for (int i=0;i<n;++i)
c[i]=a[i]*b[i];
fft(c,-1);
for (int i=0;i<=an+bn;++i)
printf("%d ",int(c[i].a+0.5));//精度问题……你会发现有一种很尴尬的情况中,输出实数会出现-0
return 0;
}
inline void init(){//计算每个编号用二进制翻转过来是是什么(想不到什么直接用位运算的巧妙方法)
for (int i=0;i<n;++i){
int tmp=0;
for (int j=0,k=i;j<m;++j,k>>=1)
tmp=(tmp<<1)+(k&1);
re[i]=tmp;
}
}
inline void fft(com* a,int flag){
for (int i=0;i<n;++i)
if (i<re[i])
swap(a[i],a[re[i]]);
for (int i=1;i<n;i<<=1){//i表示从长度为i的区间转移到长度为i*2的区间
com wn(cos(flag*PI/i),sin(flag*PI/i));//求主i*2次单位根(注意是i*2次!)
for (int j=0;j<n;j+=i<<1){//分段来枚举
com wnk(1,0);
for (int k=j;k<j+i;++k,wnk=wnk*wn){
//以下为蝴蝶变换
com x=a[k],y=wnk*a[k+i];
a[k]=x+y;
a[k+i]=x-y;
}
}
}
if (flag==-1)
for (int i=0;i<n;++i)
a[i]=a[i]/n;
}
至于常数小的代码,我真的不会码……
我的这个代码在洛谷的模板题上跑2000+ms,而题目说最好在1000ms以内通过。
审视了半天,没有发现什么优化了之后有特别大的作用的修改方法。
然后,我试着用YL标程里的方法打一遍。YL的标程中FFT的枚举方式和我的不太一样。
我也是着这样打一遍,然后我就发现更慢了……可能是因为他在枚举的过程中没有一个紧接着一个枚举(因为有高速缓存,所以顺序访问数组自然会比跳着访问数组要快)
自己打的程序常数终究是比人家的大啊……