• 深入理解java线程池—ThreadPoolExecutor


    线程池有多重要

    线程是一个程序员一定会涉及到的一个概念,但是线程的创建和切换都是代价比较大的。所以,我们有没有一个好的方案能做到线程的复用呢?这就涉及到一个概念——线程池。合理的使用线程池能够带来3个很明显的好处:
    1.降低资源消耗:通过重用已经创建的线程来降低线程创建和销毁的消耗
    2.提高响应速度:任务到达时不需要等待线程创建就可以立即执行。
    3.提高线程的可管理性:线程池可以统一管理、分配、调优和监控。

    java多线程池的支持——ThreadPoolExecutor

    java的线程池支持主要通过ThreadPoolExecutor来实现,我们使用的ExecutorService的各种线程池策略都是基于ThreadPoolExecutor实现的,所以ThreadPoolExecutor十分重要。要弄明白各种线程池策略,必须先弄明白ThreadPoolExecutor。

    1. 实现原理

    首先看一个线程池的流程图:

     
    Paste_Image.png

    step1.调用ThreadPoolExecutor的execute提交线程,首先检查CorePool,如果CorePool内的线程小于CorePoolSize,新创建线程执行任务。
    step2.如果当前CorePool内的线程大于等于CorePoolSize,那么将线程加入到BlockingQueue。
    step3.如果不能加入BlockingQueue,在小于MaxPoolSize的情况下创建线程执行任务。
    step4.如果线程数大于等于MaxPoolSize,那么执行拒绝策略。

    2.线程池的创建

    线程池的创建可以通过ThreadPoolExecutor的构造方法实现:

     /**
         * Creates a new {@code ThreadPoolExecutor} with the given initial
         * parameters.
         *
         * @param corePoolSize the number of threads to keep in the pool, even
         *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
         * @param maximumPoolSize the maximum number of threads to allow in the
         *        pool
         * @param keepAliveTime when the number of threads is greater than
         *        the core, this is the maximum time that excess idle threads
         *        will wait for new tasks before terminating.
         * @param unit the time unit for the {@code keepAliveTime} argument
         * @param workQueue the queue to use for holding tasks before they are
         *        executed.  This queue will hold only the {@code Runnable}
         *        tasks submitted by the {@code execute} method.
         * @param threadFactory the factory to use when the executor
         *        creates a new thread
         * @param handler the handler to use when execution is blocked
         *        because the thread bounds and queue capacities are reached
         * @throws IllegalArgumentException if one of the following holds:<br>
         *         {@code corePoolSize < 0}<br>
         *         {@code keepAliveTime < 0}<br>
         *         {@code maximumPoolSize <= 0}<br>
         *         {@code maximumPoolSize < corePoolSize}
         * @throws NullPointerException if {@code workQueue}
         *         or {@code threadFactory} or {@code handler} is null
         */
        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory,
                                  RejectedExecutionHandler handler) {
            if (corePoolSize < 0 ||
                maximumPoolSize <= 0 ||
                maximumPoolSize < corePoolSize ||
                keepAliveTime < 0)
                throw new IllegalArgumentException();
            if (workQueue == null || threadFactory == null || handler == null)
                throw new NullPointerException();
            this.corePoolSize = corePoolSize;
            this.maximumPoolSize = maximumPoolSize;
            this.workQueue = workQueue;
            this.keepAliveTime = unit.toNanos(keepAliveTime);
            this.threadFactory = threadFactory;
            this.handler = handler;
        }
     

    具体解释一下上述参数:

    1. corePoolSize 核心线程池大小
    2. maximumPoolSize 线程池最大容量大小
    3. keepAliveTime 线程池空闲时,线程存活的时间
    4. TimeUnit 时间单位
    5. ThreadFactory 线程工厂
    6. BlockingQueue任务队列
    7. RejectedExecutionHandler 线程拒绝策略
    3.线程的提交

    ThreadPoolExecutor的构造方法如上所示,但是只是做一些参数的初始化,ThreadPoolExecutor被初始化好之后便可以提交线程任务,线程的提交方法主要是execute和submit。这里主要说execute,submit会在后续的博文中分析。

     /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             * 如果当前的线程数小于核心线程池的大小,根据现有的线程作为第一个Worker运行的线程,
             * 新建一个Worker,addWorker自动的检查当前线程池的状态和Worker的数量,
             * 防止线程池在不能添加线程的状态下添加线程
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *  如果线程入队成功,然后还是要进行double-check的,因为线程池在入队之后状态是可能会发生变化的
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             * 
             * 如果task不能入队(队列满了),这时候尝试增加一个新线程,如果增加失败那么当前的线程池状态变化了或者线程池已经满了
             * 然后拒绝task
             */
            int c = ctl.get();
            //当前的Worker的数量小于核心线程池大小时,新建一个Worker。
            if (workerCountOf(c) < corePoolSize) { 
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))//recheck防止线程池状态的突变,如果突变,那么将reject线程,防止workQueue中增加新线程
                    reject(command);
                else if (workerCountOf(recheck) == 0)//上下两个操作都有addWorker的操作,但是如果在workQueue.offer的时候Worker变为0,
                                                    //那么将没有Worker执行新的task,所以增加一个Worker.
                    addWorker(null, false);
            }
            //如果workQueue满了,那么这时候可能还没到线程池的maxnum,所以尝试增加一个Worker
            else if (!addWorker(command, false))
                reject(command);//如果Worker数量到达上限,那么就拒绝此线程
        }
    这里需要明确几个概念:
    
    Worker和Task的区别,Worker是当前线程池中的线程,而task虽然是runnable,但是并没有真正执行,只是被Worker调用了run方法,后面会看到这部分的实现。
    maximumPoolSize和corePoolSize的区别:这个概念很重要,maximumPoolSize为线程池最大容量,也就是说线程池最多能起多少Worker。corePoolSize是核心线程池的大小,当corePoolSize满了时,同时workQueue full(ArrayBolckQueue是可能满的) 那么此时允许新建Worker去处理workQueue中的Task,但是不能超过maximumPoolSize。超过corePoolSize之外的线程会在空闲超时后终止。
    核心方法:addWorker#####
    Worker的增加和Task的获取以及终止都是在此方法中实现的,也就是这一个方法里面包含了很多东西。在addWorker方法中提到了Status的概念,Status是线程池的核心概念,这里我们先看一段关于status的注释:
    
    
    /**
         * 首先ctl是一个原子量,同时它里面包含了两个field,一个是workerCount,另一个是runState
         * workerCount表示当前有效的线程数,也就是Worker的数量
         * runState表示当前线程池的状态
         * The main pool control state, ctl, is an atomic integer packing
         * two conceptual fields
         *   workerCount, indicating the effective number of threads
         *   runState,    indicating whether running, shutting down etc
         * 
         * 两者是怎么结合的呢?首先workerCount是占据着一个atomic integer的后29位的,而状态占据了前3位
         * 所以,workerCount上限是(2^29)-1。
         * In order to pack them into one int, we limit workerCount to
         * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
         * billion) otherwise representable. If this is ever an issue in
         * the future, the variable can be changed to be an AtomicLong,
         * and the shift/mask constants below adjusted. But until the need
         * arises, this code is a bit faster and simpler using an int.
         *
         * The workerCount is the number of workers that have been
         * permitted to start and not permitted to stop.  The value may be
         * transiently different from the actual number of live threads,
         * for example when a ThreadFactory fails to create a thread when
         * asked, and when exiting threads are still performing
         * bookkeeping before terminating. The user-visible pool size is
         * reported as the current size of the workers set.
         *
         * runState是整个线程池的运行生命周期,有如下取值:
         *  1. RUNNING:可以新加线程,同时可以处理queue中的线程。
         *  2. SHUTDOWN:不增加新线程,但是处理queue中的线程。
         *  3.STOP 不增加新线程,同时不处理queue中的线程。
         *  4.TIDYING 所有的线程都终止了(queue中),同时workerCount为0,那么此时进入TIDYING
         *  5.terminated()方法结束,变为TERMINATED
         * The runState provides the main lifecyle control, taking on values:
         *
         *   RUNNING:  Accept new tasks and process queued tasks
         *   SHUTDOWN: Don't accept new tasks, but process queued tasks
         *   STOP:     Don't accept new tasks, don't process queued tasks,
         *             and interrupt in-progress tasks
         *   TIDYING:  All tasks have terminated, workerCount is zero,
         *             the thread transitioning to state TIDYING
         *             will run the terminated() hook method
         *   TERMINATED: terminated() has completed
         *
         * The numerical order among these values matters, to allow
         * ordered comparisons. The runState monotonically increases over
         * time, but need not hit each state. The transitions are:
         * 状态的转化主要是:
         * RUNNING -> SHUTDOWN(调用shutdown())
         *    On invocation of shutdown(), perhaps implicitly in finalize()
         * (RUNNING or SHUTDOWN) -> STOP(调用shutdownNow())
         *    On invocation of shutdownNow()
         * SHUTDOWN -> TIDYING(queue和pool均empty)
         *    When both queue and pool are empty
         * STOP -> TIDYING(pool empty,此时queue已经为empty)
         *    When pool is empty
         * TIDYING -> TERMINATED(调用terminated())
         *    When the terminated() hook method has completed
         *
         * Threads waiting in awaitTermination() will return when the
         * state reaches TERMINATED.
         *
         * Detecting the transition from SHUTDOWN to TIDYING is less
         * straightforward than you'd like because the queue may become
         * empty after non-empty and vice versa during SHUTDOWN state, but
         * we can only terminate if, after seeing that it is empty, we see
         * that workerCount is 0 (which sometimes entails a recheck -- see
         * below).
         */

    下面是状态的代码:

    //利用ctl来保证当前线程池的状态和当前的线程的数量。ps:低29位为线程池容量,高3位为线程状态。
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        //设定偏移量
        private static final int COUNT_BITS = Integer.SIZE - 3;
        //确定最大的容量2^29-1
        private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
        //几个状态,用Integer的高三位表示
        // runState is stored in the high-order bits
        //111
        private static final int RUNNING    = -1 << COUNT_BITS;
        //000
        private static final int SHUTDOWN   =  0 << COUNT_BITS;
        //001
        private static final int STOP       =  1 << COUNT_BITS;
        //010
        private static final int TIDYING    =  2 << COUNT_BITS;
        //011
        private static final int TERMINATED =  3 << COUNT_BITS;
        //获取线程池状态,取前三位
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }
        //获取当前正在工作的worker,主要是取后面29位
        private static int workerCountOf(int c)  { return c & CAPACITY; }
        //获取ctl
        private static int ctlOf(int rs, int wc) { return rs | wc; }
    接下来贴上addWorker方法看看:
    
    
        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked, which requires a
         * backout of workerCount, and a recheck for termination, in case
         * the existence of this worker was holding up termination.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
                // Check if queue empty only if necessary.
                /**
                 * rs!=Shutdown || fistTask!=null || workCount.isEmpty
                 * 如果当前的线程池的状态>SHUTDOWN 那么拒绝Worker的add 如果=SHUTDOWN
                 * 那么此时不能新加入不为null的Task,如果在WorkCount为empty的时候不能加入任何类型的Worker,
                 * 如果不为empty可以加入task为null的Worker,增加消费的Worker
                 */
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            Worker w = new Worker(firstTask);
            Thread t = w.thread;
    
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
                int c = ctl.get();
                int rs = runStateOf(c);
                /**
                 * rs!=SHUTDOWN ||firstTask!=null
                 * 
                 * 同样检测当rs>SHUTDOWN时直接拒绝减小Wc,同时Terminate,如果为SHUTDOWN同时firstTask不为null的时候也要Terminate
                 */
                if (t == null ||
                    (rs >= SHUTDOWN &&
                     ! (rs == SHUTDOWN &&
                        firstTask == null))) {
                    decrementWorkerCount();
                    tryTerminate();
                    return false;
                }
    
                workers.add(w);
    
                int s = workers.size();
                if (s > largestPoolSize)
                    largestPoolSize = s;
            } finally {
                mainLock.unlock();
            }
    
            t.start();
            // It is possible (but unlikely) for a thread to have been
            // added to workers, but not yet started, during transition to
            // STOP, which could result in a rare missed interrupt,
            // because Thread.interrupt is not guaranteed to have any effect
            // on a non-yet-started Thread (see Thread#interrupt).
            //Stop或线程Interrupt的时候要中止所有的运行的Worker
            if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
                t.interrupt();
            return true;
        }

    addWorker中首先进行了一次线程池状态的检测:

     int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //判断当前线程池的状态是不是已经shutdown,如果shutdown了拒绝线程加入
                //(rs!=SHUTDOWN || first!=null || workQueue.isEmpty())
                //如果rs不为SHUTDOWN,此时状态是STOP、TIDYING或TERMINATED,所以此时要拒绝请求
                //如果此时状态为SHUTDOWN,而传入一个不为null的线程,那么需要拒绝
                //如果状态为SHUTDOWN,同时队列中已经没任务了,那么拒绝掉
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;

    其实是比较难懂的,主要在线程池状态判断条件这里:

    1. 如果是runing,那么跳过if。
    2. 如果rs>=SHUTDOWN,同时不等于SHUTDOWN,即为SHUTDOWN以上的状态,那么不接受新线程。
    3. 如果rs>=SHUTDOWN,同时等于SHUTDOWN,同时first!=null,那么拒绝新线程,如果first==null,那么可能是新增加线程消耗Queue中的线程。但是同时还要检测workQueue是否isEmpty(),如果为Empty,那么队列已空,不需要增加消耗线程,如果队列没有空那么运行增加first=null的Worker。
      从这里是可以看出一些策略的
      首先,在rs>SHUTDOWN时,拒绝一切线程的增加,因为STOP是会终止所有的线程,同时移除Queue中所有的待执行的线程的,所以也不需要增加first=null的Worker了
      其次,在SHUTDOWN状态时,是不能增加first!=null的Worker的,同时即使first=null,但是此时Queue为Empty也是不允许增加Worker的,SHUTDOWN下增加的Worker主要用于消耗Queue中的任务。
      SHUTDOWN状态时,是不允许向workQueue中增加线程的,isRunning(c) && workQueue.offer(command) 每次在offer之前都要做状态检测,也就是线程池状态变为>=SHUTDOWN时不允许新线程进入线程池了。
     for (;;) {
                    int wc = workerCountOf(c);
                    //如果当前的数量超过了CAPACITY,或者超过了corePoolSize和maximumPoolSize(试core而定)
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    //CAS尝试增加线程数,如果失败,证明有竞争,那么重新到retry。
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    //判断当前线程池的运行状态
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }

    这段代码做了一个兼容,主要是没有到corePoolSize 或maximumPoolSize上限时,那么允许添加线程,CAS增加Worker的数量后,跳出循环。
    接下来实例化Worker,实例化Worker其实是很关键的,后面会说。
    因为workers是HashSet线程不安全的,那么此时需要加锁,所以mainLock.lock(); 之后重新检查线程池的状态,如果状态不正确,那么减小Worker的数量,为什么tryTerminate()目前不大清楚。如果状态正常,那么添加Worker到workers。最后:

    if (runStateOf(ctl.get()) == STOP && ! t.isInterrupted())
                t.interrupt();

    注释说的很清楚,为了能及时的中断此Worker,因为线程存在未Start的情况,此时是不能响应中断的,如果此时status变为STOP,则不能中断线程。此处用作中断线程之用。
    接下来我们看Worker的方法:

     /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }

    这里可以看出Worker是对firstTask的包装,并且Worker本身就是Runnable的,看上去真心很流氓的感觉~~~
    通过ThreadFactory为Worker自己构建一个线程。
    因为Worker是Runnable类型的,所以是有run方法的,上面也看到了会调用t.start() 其实就是执行了run方法:

         /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }

    调用了runWorker:

    /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         * 1 Worker可能还是执行一个初始化的task——firstTask。
         *    但是有时也不需要这个初始化的task(可以为null),只要pool在运行,就会
         *   通过getTask从队列中获取Task,如果返回null,那么worker退出。
         *   另一种就是external抛出异常导致worker退出。
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         * 
         * 
         * 2 在运行任何task之前,都需要对worker加锁来防止other pool中断worker。
         *   clearInterruptsForTaskRun保证除了线程池stop,那么现场都没有中断标志
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and
         * clearInterruptsForTaskRun called to ensure that unless pool is
         * stopping, this thread does not have its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to
         * afterExecute. We separately handle RuntimeException, Error
         * (both of which the specs guarantee that we trap) and arbitrary
         * Throwables.  Because we cannot rethrow Throwables within
         * Runnable.run, we wrap them within Errors on the way out (to the
         * thread's UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Runnable task = w.firstTask;
            w.firstTask = null;
            //标识线程是不是异常终止的
            boolean completedAbruptly = true;
            try {
                //task不为null情况是初始化worker时,如果task为null,则去队列中取线程--->getTask()
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    //获取woker的锁,防止线程被其他线程中断
                    clearInterruptsForTaskRun();//清楚所有中断标记
                    try {
                        beforeExecute(w.thread, task);//线程开始执行之前执行此方法,可以实现Worker未执行退出,本类中未实现
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);//线程执行后执行,可以实现标识Worker异常中断的功能,本类中未实现
                        }
                    } finally {
                        task = null;//运行过的task标null
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                //处理worker退出的逻辑
                processWorkerExit(w, completedAbruptly);
            }
        }
    从上面代码可以看出,execute的Task是被“包装 ”了一层,线程启动时是内部调用了Task的run方法。
    接下来所有的核心集中在getTask()方法上:
    
    
    /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         *         
         *         
         *  队列中获取线程
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //当前状态为>stop时,不处理workQueue中的任务,同时减小worker的数量所以返回null,如果为shutdown 同时workQueue已经empty了,同样减小worker数量并返回null
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                boolean timed;      // Are workers subject to culling?
    
                for (;;) {
                    int wc = workerCountOf(c);
                    timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                    if (wc <= maximumPoolSize && ! (timedOut && timed))
                        break;
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
    
                try {
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }

    这段代码十分关键,首先看几个局部变量:
    boolean timedOut = false;
    主要是判断后面的poll是否要超时
    boolean timed;
    主要是标识着当前Worker超时是否要退出。wc > corePoolSize时需要减小空闲的Worker数,那么timed为true,但是wc <= corePoolSize时,不能减小核心线程数timed为false。
    timedOut初始为false,如果timed为true那么使用poll取线程。如果正常返回,那么返回取到的task。如果超时,证明worker空闲,同时worker超过了corePoolSize,需要删除。返回r=null。则 timedOut = true。此时循环到wc <= maximumPoolSize && ! (timedOut && timed)时,减小worker数,并返回null,导致worker退出。如果线程数<= corePoolSize,那么此时调用 workQueue.take(),没有线程获取到时将一直阻塞,知道获取到线程或者中断,关于中断后面Shutdown的时候会说。

    至此线程执行过程就分析完了~~~~


    关于终止线程池

    我个人认为,如果想了解明白线程池,那么就一定要理解好各个状态之间的转换,想理解转换,线程池的终止机制是很好的一个途径。对于关闭线程池主要有两个方法shutdown()和shutdownNow():
    首先从shutdown()方法开始:

     /**
         * Initiates an orderly shutdown in which previously submitted
         * tasks are executed, but no new tasks will be accepted.
         * Invocation has no additional effect if already shut down.
         *
         * <p>This method does not wait for previously submitted tasks to
         * complete execution.  Use {@link #awaitTermination awaitTermination}
         * to do that.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public void shutdown() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //判断是否可以操作目标线程
                checkShutdownAccess();
                //设置线程池状态为SHUTDOWN,此处之后,线程池中不会增加新Task
                advanceRunState(SHUTDOWN);
                //中断所有的空闲线程
                interruptIdleWorkers();
                onShutdown(); // hook for ScheduledThreadPoolExecutor
            } finally {
                mainLock.unlock();
            }
            //转到Terminate
            tryTerminate();
        }

    shutdown做了几件事:
    1. 检查是否能操作目标线程
    2. 将线程池状态转为SHUTDOWN
    3. 中断所有空闲线程
    这里就引发了一个问题,什么是空闲线程?
    这需要接着看看interruptIdleWorkers是怎么回事。

     private void interruptIdleWorkers(boolean onlyOne) {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            //这里的意图很简单,遍历workers 对所有worker做中断处理。
            // w.tryLock()对Worker加锁,这保证了正在运行执行Task的Worker不会被中断,那么能中断哪些线程呢?
            try {
                for (Worker w : workers) {
                    Thread t = w.thread;
                    if (!t.isInterrupted() && w.tryLock()) {
                        try {
                            t.interrupt();
                        } catch (SecurityException ignore) {
                        } finally {
                            w.unlock();
                        }
                    }
                    if (onlyOne)
                        break;
                }
            } finally {
                mainLock.unlock();
            }
        }

    这里主要是为了中断worker,但是中断之前需要先获取锁,这就意味着正在运行的Worker不能中断。但是上面的代码有w.tryLock(),那么获取不到锁就不会中断,shutdown的Interrupt只是对所有的空闲Worker(正在从workQueue中取Task,此时Worker没有加锁)发送中断信号。

     
    while (task != null || (task = getTask()) != null) {
                    w.lock();
                    //获取woker的锁,防止线程被其他线程中断
                    clearInterruptsForTaskRun();//清楚所有中断标记
                    try {
                        beforeExecute(w.thread, task);//线程开始执行之前执行此方法,可以实现Worker未执行退出,本类中未实现
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);//线程执行后执行,可以实现标识Worker异常中断的功能,本类中未实现
                        }
                    } finally {
                        task = null;//运行过的task标null
                        w.completedTasks++;
                        w.unlock();
                    }
                }

    在runWorker中,每一个Worker getTask成功之后都要获取Worker的锁之后运行,也就是说运行中的Worker不会中断。因为核心线程一般在空闲的时候会一直阻塞在获取Task上,也只有中断才可能导致其退出。这些阻塞着的Worker就是空闲的线程(当然,非核心线程,并且阻塞的也是空闲线程)。在getTask方法中:

    private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                //当前状态为>stop时,不处理workQueue中的任务,同时减小worker的数量所以返回null,如果为shutdown 同时workQueue已经empty了,同样减小worker数量并返回null
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                boolean timed;      // Are workers subject to culling?
    
                for (;;) {
                    //allowCoreThreadTimeOu是判断CoreThread是否会超时的,true为会超时,false不会超时。默认为false
                    int wc = workerCountOf(c);
                    timed = allowCoreThreadTimeOut || wc > corePoolSize;
    
                    if (wc <= maximumPoolSize && ! (timedOut && timed))
                        break;
                    if (compareAndDecrementWorkerCount(c))
                        return null;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
    
                try {
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }

    会有两阶段的Worker:

    1. 刚进入getTask(),还没进行状态判断。
    2. block在poll或者take上的Worker。

    当调用ShutDown方法时,首先设置了线程池的状态为ShutDown,此时1阶段的worker进入到状态判断时会返回null,此时Worker退出。
    因为getTask的时候是不加锁的,所以在shutdown时可以调用worker.Interrupt.此时会中断退出,Loop到状态判断时,同时workQueue为empty。那么抛出中断异常,导致重新Loop,在检测线程池状态时,Worker退出。如果workQueue不为null就不会退出,此处有些疑问,因为没有看见中断标志位清除的逻辑,那么这里就会不停的循环直到workQueue为Empty退出。
    这里也能看出来SHUTDOWN只是清除一些空闲Worker,并且拒绝新Task加入,对于workQueue中的线程还是继续处理的。
    对于shutdown中获取mainLock而addWorker中也做了mainLock的获取,这么做主要是因为Works是HashSet类型的,是线程不安全的,我们也看到在addWorker后面也是对线程池状态做了判断,将Worker添加和中断逻辑分离开。
    接下来做了tryTerminate()操作,这操作是进行了后面状态的转换,在shutdownNow后面说。
    接下来看看shutdownNow:

    /**
         * Attempts to stop all actively executing tasks, halts the
         * processing of waiting tasks, and returns a list of the tasks
         * that were awaiting execution. These tasks are drained (removed)
         * from the task queue upon return from this method.
         *
         * <p>This method does not wait for actively executing tasks to
         * terminate.  Use {@link #awaitTermination awaitTermination} to
         * do that.
         *
         * <p>There are no guarantees beyond best-effort attempts to stop
         * processing actively executing tasks.  This implementation
         * cancels tasks via {@link Thread#interrupt}, so any task that
         * fails to respond to interrupts may never terminate.
         *
         * @throws SecurityException {@inheritDoc}
         */
        public List<Runnable> shutdownNow() {
            List<Runnable> tasks;
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                checkShutdownAccess();
                advanceRunState(STOP);
                interruptWorkers();
                tasks = drainQueue();
            } finally {
                mainLock.unlock();
            }
            tryTerminate();
            return tasks;
        }

    shutdownNow和shutdown代码类似,但是实现却很不相同。首先是设置线程池状态为STOP,前面的代码我们可以看到,是对SHUTDOWN有一些额外的判断逻辑,但是对于>=STOP,基本都是reject,STOP也是比SHUTDOWN更加严格的一种状态。此时不会有新Worker加入,所有刚执行完一个线程后去GetTask的Worker都会退出。
    之后调用interruptWorkers:

     /**
         * Interrupts all threads, even if active. Ignores SecurityExceptions
         * (in which case some threads may remain uninterrupted).
         */
        private void interruptWorkers() {
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                for (Worker w : workers) {
                    try {
                        w.thread.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            } finally {
                mainLock.unlock();
            }
        }

    这里可以看出来,此方法目的是中断所有的Worker,而不是像shutdown中那样只中断空闲线程。这样体现了STOP的特点,中断所有线程,同时workQueue中的Task也不会执行了。所以接下来drainQueue:

     /**
         * Drains the task queue into a new list, normally using
         * drainTo. But if the queue is a DelayQueue or any other kind of
         * queue for which poll or drainTo may fail to remove some
         * elements, it deletes them one by one.
         */
        private List<Runnable> drainQueue() {
            BlockingQueue<Runnable> q = workQueue;
            List<Runnable> taskList = new ArrayList<Runnable>();
            q.drainTo(taskList);
            if (!q.isEmpty()) {
                for (Runnable r : q.toArray(new Runnable[0])) {
                    if (q.remove(r))
                        taskList.add(r);
                }
            }
            return taskList;
        }

    获取所有没有执行的Task,并且返回。
    这也体现了STOP的特点:
    拒绝所有新Task的加入,同时中断所有线程,WorkerQueue中没有执行的线程全部抛弃。所以此时Pool是空的,WorkerQueue也是空的。
    这之后就是进行到TIDYING和TERMINATED的转化了:

     /**
         * Transitions to TERMINATED state if either (SHUTDOWN and pool
         * and queue empty) or (STOP and pool empty).  If otherwise
         * eligible to terminate but workerCount is nonzero, interrupts an
         * idle worker to ensure that shutdown signals propagate. This
         * method must be called following any action that might make
         * termination possible -- reducing worker count or removing tasks
         * from the queue during shutdown. The method is non-private to
         * allow access from ScheduledThreadPoolExecutor.
         */
        final void tryTerminate() {
            for (;;) {
                int c = ctl.get();
                if (isRunning(c) ||
                    runStateAtLeast(c, TIDYING) ||
                    (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                    return;
                if (workerCountOf(c) != 0) { // Eligible to terminate
                    interruptIdleWorkers(ONLY_ONE);
                    return;
                }
    
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                        try {
                            terminated();
                        } finally {
                            ctl.set(ctlOf(TERMINATED, 0));
                            termination.signalAll();
                        }
                        return;
                    }
                } finally {
                    mainLock.unlock();
                }
                // else retry on failed CAS
            }
        }

    上面的代码其实很有意思有几种状态是不能转化到TIDYING的:

    1. RUNNING状态
    2. TIDYING或TERMINATED
    3. SHUTDOWN状态,但是workQueue不为空

    也说明了两点:
    1. SHUTDOWN想转化为TIDYING,需要workQueue为空,同时workerCount为0。
    2. STOP转化为TIDYING,需要workerCount为0
    如果满足上面的条件(一般一定时间后都会满足的),那么CAS成TIDYING,TIDYING也只是个过度状态,最终会转化为TERMINATED。

    至此,ThreadPoolExecutor一些核心思想就介绍完了,想分析清楚实在是不容易,对于ThreadPoolExecutor我还是有些不懂地方,以上只是我对源码的片面的见解,如果有不正确之处,希望大神能不吝赐教。同时也希望给正在研究ThreadPoolExecutor的童鞋提供一点帮助。

  • 相关阅读:
    matplotlib实例笔记
    matplotlib笔记3
    pandas之时间重采样笔记
    pandas之时间序列笔记
    pandas之数据IO笔记
    pandas之聚合运算
    pandas之分组计算笔记
    算术运算符合
    数据类型 概况 (字符串,列表)
    for 循环
  • 原文地址:https://www.cnblogs.com/jxust-jiege666/p/7725145.html
Copyright © 2020-2023  润新知