• HDU_1548


    There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
    Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"?
    Input

    The input consists of several test cases.,Each test case contains two lines.
    The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
    A single 0 indicate the end of the input.

    Output

    For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".

    Sample Input

    5 1 5
    3 3 1 2 5
    0

    Sample Output

    3

    1.dijkstra解法

     1 #include <iostream>
     2 #include <string.h>
     3 using namespace std;
     4 #define MAXN 250
     5 const int INF = 1234567;
     6 int g[MAXN][MAXN];
     7 int dis[MAXN];
     8 int vis[MAXN];
     9 int n;
    10 // 5 1 5
    11 // 3 3 1 2 5
    12 // 0
    13 void init(){
    14     memset(vis,0,sizeof(vis));
    15     for(int i = 1; i <= n;i++){
    16         for(int j = 1; j <= n; j++){
    17             if(i == j){
    18                 g[i][j] = 0;
    19             }
    20             else g[i][j] = INF;
    21         }
    22     }
    23 }
    24 void dij(int v0){
    25     int pos = v0;
    26     for(int i = 1; i <= n; i++){
    27         dis[i] = g[v0][i];
    28     }
    29     vis[pos] = 1;
    30     for(int i = 1; i < n; i++){
    31         int mins = INF;
    32         for(int j = 1; j <= n; j++){
    33             if(!vis[j] && dis[j] < mins){
    34                 pos = j;
    35                 mins = dis[j];
    36             }
    37         }
    38         vis[pos] = 1;
    39         for(int j = 1; j <= n; j++){
    40             if(!vis[j] && dis[j] > dis[pos] + g[pos][j])
    41                 dis[j] = dis[pos] + g[pos][j];
    42         }
    43     }
    44 }
    45 int main(){
    46     while(cin >> n && n){
    47         init();
    48         int from, to;
    49         cin >> from >> to;
    50         for(int i = 1; i <= n; i++){
    51             int w;
    52             cin >> w;
    53             if(w + i <= n)
    54                 g[i][w + i] = 1;
    55             if(i - w >= 0)
    56                 g[i][i - w] = 1;
    57         }
    58         dij(from);
    59         if(dis[to] != INF)
    60             cout << dis[to] << endl;
    61         else cout << -1 << endl;
    62     }
    63 }


    2. bfs解法

     1 #include <iostream>
     2 #include <queue>
     3 #include <string.h>
     4 using namespace std;
     5 const int MAXN = 250;
     6 int n;
     7 int from, to;
     8 int k[MAXN];
     9 int vis[MAXN];
    10 // 5 1 5
    11 // 3 3 1 2 5
    12 // 0
    13 struct Node{
    14     int x, step;
    15 }pos,q;
    16 
    17 void bfs(int start){
    18     memset(vis,0,sizeof(vis));
    19     queue<Node> que;
    20     pos.x = start;
    21     pos.step = 0;
    22     que.push(pos);
    23     vis[start] = 1;
    24     while(!que.empty()){
    25         pos = que.front();
    26         que.pop();
    27         if(pos.x == to){
    28             cout << pos.step << endl;
    29             return ;
    30         }
    31         q.x = pos.x - k[pos.x];
    32         if(q.x >= 1 && vis[q.x] == 0){
    33             q.step = pos.step + 1;
    34             que.push(q);
    35             vis[q.x] = 1;
    36         }
    37         q.x = pos.x + k[pos.x];
    38         if(q.x <= n && vis[q.x] == 0){
    39             q.step = pos.step + 1;
    40             que.push(q);
    41             vis[q.x] = 1;
    42         }
    43     }
    44     cout << -1 << endl;
    45 }
    46 int main(){
    47     while(cin >> n && n){
    48         cin >> from >> to;
    49         for(int i = 1; i <= n; i++){
    50             cin >> k[i];
    51         }
    52         bfs(from);
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    牛客国庆集训派对Day6 Solution
    牛客国庆集训派对Day5 Solution
    牛客国庆集训派对Day4 Solution
    牛客国庆集训派对Day3 Solution
    牛客国庆集训派对Day2 Solution
    牛客国庆集训派对Day1 Solution
    The 2018 ACM-ICPC Asia Qingdao Regional Contest, Online Solution
    ACM-ICPC 2018 焦作赛区网络预赛 Solution
    2016 CCPC 长春 Solution
    CCPC 2017-2018, Finals Solution
  • 原文地址:https://www.cnblogs.com/jxust-jiege666/p/6848339.html
Copyright © 2020-2023  润新知