• TensorFlow使用RNN实现手写数字识别


    学习,笔记,有时间会加注释以及函数之间的逻辑关系。

    # https://www.cnblogs.com/felixwang2/p/9190664.html
     1 # https://www.cnblogs.com/felixwang2/p/9190664.html
     2 # TensorFlow(十二):使用RNN实现手写数字识别
     3 
     4 import tensorflow as tf
     5 from tensorflow.examples.tutorials.mnist import input_data
     6 
     7 # 载入数据集
     8 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
     9 
    10 # 输入图片是28*28
    11 n_inputs = 28  # 输入一行,一行有28个数据
    12 max_time = 28  # 一共28行
    13 lstm_size = 100  # 隐层单元
    14 n_classes = 10  # 10个分类
    15 batch_size = 50  # 每批次50个样本
    16 n_batch = mnist.train.num_examples // batch_size  # 计算一共有多少个批次
    17 
    18 # 这里的none表示第一个维度可以是任意的长度
    19 x = tf.placeholder(tf.float32, [None, 784])
    20 # 正确的标签
    21 y = tf.placeholder(tf.float32, [None, 10])
    22 
    23 # 初始化权值
    24 weights = tf.Variable(tf.truncated_normal([lstm_size, n_classes], stddev=0.1))
    25 # 初始化偏置值
    26 biases = tf.Variable(tf.constant(0.1, shape=[n_classes]))
    27 
    28 
    29 # 定义RNN网络
    30 def RNN(X, weights, biases):
    31     # inputs=[batch_size, max_time, n_inputs]
    32     inputs = tf.reshape(X, [-1, max_time, n_inputs])
    33     # 定义LSTM基本CELL
    34     lstm_cell = tf.contrib.rnn.BasicLSTMCell(lstm_size)
    35     # final_state[state,batch_size,cell.state_size]
    36     # final_state[0]是cell state
    37     # final_state[1]是hidden_state
    38     # outputs: The RNN output 'Tensor'.
    39     #  If time_major == False (default), this will be a `Tensor` shaped:
    40     #       `[batch_size, max_time, cell.output_size]`.
    41     #  If time_major == True, this will be a `Tensor` shaped:
    42     #       `[max_time, batch_size, cell.output_size]`.
    43     # final_state 记录的是最后一次的输出结果
    44     # outputs 记录的是每一次的输出结果
    45 
    46     outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, inputs, dtype=tf.float32)
    47     results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases)
    48     return results
    49 
    50 
    51 # 计算RNN的返回结果
    52 prediction = RNN(x, weights, biases)
    53 # 损失函数
    54 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y))
    55 # 使用AdamOptimizer进行优化
    56 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    57 # 结果存放在一个布尔型列表中
    58 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))  # argmax返回一维张量中最大的值所在的位置
    59 # 求准确率
    60 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))  # 把correct_prediction变为float32类型
    61 # 初始化
    62 init = tf.global_variables_initializer()
    63 
    64 gpu_options = tf.GPUOptions(allow_growth=True)
    65 with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
    66     sess.run(init)
    67     for epoch in range(6):
    68         for batch in range(n_batch):
    69             batch_xs, batch_ys = mnist.train.next_batch(batch_size)
    70             sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
    71 
    72         acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
    73         print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
    View Code

    输出

    Iter 0, Testing Accuracy= 0.6694
    Iter 1, Testing Accuracy= 0.714
    Iter 2, Testing Accuracy= 0.7984
    Iter 3, Testing Accuracy= 0.8568
    Iter 4, Testing Accuracy= 0.8863
    Iter 5, Testing Accuracy= 0.9088
    
    Process finished with exit code 0
  • 相关阅读:
    pandas的Categorical方法
    LightBGM之train
    LightBGM之Dataset
    pandas的replace方法
    python的tqdm模块
    pandas的merge方法
    pandas的drop函数
    各种服务器建议配置
    thymeleaf:访问静态方法
    The project cannot be built until its prerequisite base-service is built. Cleaning and building all projects is recommended
  • 原文地址:https://www.cnblogs.com/juluwangshier/p/11432517.html
Copyright © 2020-2023  润新知