Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14585 Accepted Submission(s): 8901
Problem Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 - the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
ZOJ Monthly, January 2003
线段树求逆序数,每当你将开头的a[i],移到尾部的时候,逆序数会减少a[i],也会增加n-a[i]-1,所以变化为n-2*a[i]-1,求最小值
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
#define LL long long
using namespace std;
const int MAX = 5500;
int Tree[MAX*4];
int a[MAX];
int MM;
int Query(int L,int R,int site,int l,int r)
{
if(l==L&&R==r)
{
return Tree[site];
}
int mid=(L+R)>>1;
if(r<=mid)
{
return Query(L,mid,site<<1,l,r);
}
else if(l>mid)
{
return Query(mid+1,R,site<<1|1,l,r);
}
else
{
return Query(L,mid,site<<1,l,mid)+Query(mid+1,R,site<<1|1,mid+1,r);
}
}
void update(int L,int R,int site,int s)
{
if(L==R)
{
Tree[site]++;
return ;
}
Tree[site]++;
int mid = (L+R)>>1;
if(mid>=s)
{
update(L,mid,site<<1,s);
}
else
{
update(mid+1,R,site<<1|1,s);
}
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(Tree,0,sizeof(Tree));
int ans=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);//求逆序数
ans+=Query(0,n-1,1,a[i],n-1);
update(0,n-1,1,a[i]);
}
MM = ans;
for(int i=1;i<=n;i++)//进行移位
{
ans=ans+n-2*a[i]-1;
if(ans<MM)
{
MM=ans;
}
}
printf("%d
",MM);
}
return 0;
}