理解mulitband。所谓的mulitband,其实就是一种多尺度的样条融合,其实现的主要方法就是laplace金字塔。
高斯金字塔是向下采样,而laplace金字塔式向上采样(也就是恢复),采用的都是差值的方法。如何能够在金字塔各个层次上面进行图像的融合,结果证明是相当不错的。网络上面流传的一个类解释了这个问题,并且能够拿来用:
#include "stdafx.h"#include <iostream>#include <vector>#include <opencv2/core/core.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/features2d/features2d.hpp>#include <opencv2/calib3d/calib3d.hpp>using namespace cv;#ifdef _DEBUG#define new DEBUG_NEW#endif#define DllExport _declspec (dllexport)
/*1.设计一个mask(一半全1,一半全0),并计算level层的gaussion_mask[i];2.计算两幅图像每一层的Laplacian[i],并与gaussion_mask[i]相乘,合成一幅result_lapacian[i];3.对两幅图像不断求prydown,并把最高层保存在gaussion[i],与gaussion_mask[i]相乘,合成一幅result_gaussion;4,对result_gaussion不断求pryup,每一层都与result_lapacian[i]合成,最后得到原-图像大小的融合图像。*/
class LaplacianBlending { private: Mat_<Vec3f> top; Mat_<Vec3f> down; Mat_< float> blendMask;
vector<Mat_<Vec3f> > topLapPyr,downLapPyr,resultLapPyr; //Laplacian Pyramids Mat topHighestLevel, downHighestLevel, resultHighestLevel; vector<Mat_<Vec3f> > maskGaussianPyramid; //masks are 3-channels for easier multiplication with RGB
int levels;
//创建金字塔 void buildPyramids() { buildLaplacianPyramid(top,topLapPyr,topHighestLevel); buildLaplacianPyramid(down,downLapPyr,downHighestLevel); buildGaussianPyramid(); } //创建gauss金字塔 void buildGaussianPyramid() {//金字塔内容Y为a每一层的掩模 assert(topLapPyr.size()>0);
maskGaussianPyramid.clear(); Mat currentImg; //blendMask就是掩码 cvtColor(blendMask, currentImg, CV_GRAY2BGR); //store color img of blend mask into maskGaussianPyramid maskGaussianPyramid.push_back(currentImg); //0-level
currentImg = blendMask; for (int l=1; l<levels+1; l++) { Mat _down; if (topLapPyr.size() > l) pyrDown(currentImg, _down, topLapPyr[l].size()); else pyrDown(currentImg, _down, topHighestLevel.size()); //lowest level
Mat down; cvtColor(_down, down, CV_GRAY2BGR); maskGaussianPyramid.push_back(down); //add color blend mask into mask Pyramid currentImg = _down; } }
//创建laplacian金字塔 void buildLaplacianPyramid(const Mat& img, vector<Mat_<Vec3f> >& lapPyr, Mat& HighestLevel) { lapPyr.clear(); Mat currentImg = img; for (int l=0; l<levels; l++) { Mat down,up; pyrDown(currentImg, down); pyrUp(down, up,currentImg.size()); Mat lap = currentImg - up; //存储的就是残D差 lapPyr.push_back(lap); currentImg = down; } currentImg.copyTo(HighestLevel); }
Mat_<Vec3f> reconstructImgFromLapPyramid() { //将左右laplacian图像拼成的resultLapPyr金字塔中每一层 //从上到下插值放大并相加,即得blend图像结果 Mat currentImg = resultHighestLevel; for (int l=levels-1; l>=0; l--) { Mat up; pyrUp(currentImg, up, resultLapPyr[l].size()); currentImg = up + resultLapPyr[l]; } return currentImg; }
void blendLapPyrs() { //获得每层金字塔中直接用左右两图Laplacian变换拼成的图像 //一半的一半就是在这个地方计算的。 是基于掩模的方式进行的. resultHighestLevel = topHighestLevel.mul(maskGaussianPyramid.back()) + downHighestLevel.mul(Scalar(1.0,1.0,1.0) - maskGaussianPyramid.back()); for (int l=0; l<levels; l++) { Mat A = topLapPyr[l].mul(maskGaussianPyramid[l]); Mat antiMask = Scalar(1.0,1.0,1.0) - maskGaussianPyramid[l]; Mat B = downLapPyr[l].mul(antiMask); Mat_<Vec3f> blendedLevel = A + B; resultLapPyr.push_back(blendedLevel); } }
public: LaplacianBlending( const Mat_<Vec3f>& _top, const Mat_<Vec3f>& _down, const Mat_< float>& _blendMask, int _levels)://缺省数y据Y,使1用 LaplacianBlending lb(l,r,m,4); top(_top),down(_down),blendMask(_blendMask),levels(_levels) { assert(_top.size() == _down.size()); assert(_top.size() == _blendMask.size()); buildPyramids(); //创建laplacian金字塔和gauss金字塔 blendLapPyrs(); //将左右金字塔融合成为a一个图片 };
Mat_<Vec3f> blend() { return reconstructImgFromLapPyramid();//reconstruct Image from Laplacian Pyramid } };
Mat_<Vec3f> LaplacianBlend( const Mat_<Vec3f>& t, const Mat_<Vec3f>& d, const Mat_< float>& m) { LaplacianBlending lb(t,d,m,4); return lb.blend(); }
DllExport double aValue =1.5;DllExport int dlladd(){ return 5;}DllExport int dlladd( int a,int b){ return a+b;}DllExport cv::Mat imagetest(){ cv::Mat image1= cv::imread( "C:\apple.png",1); cv::Mat image2= cv::imread( "C:\orange.png",1);
Mat_<Vec3f> t; image1.convertTo(t,CV_32F,1.0/255.0); //Vec3f表示有三个通道,即 [row][column][depth] Mat_<Vec3f> d; image2.convertTo(d,CV_32F,1.0/255.0);
Mat_< float> m(t.rows,d.cols,0.0); //将m全部赋3值为a0 //m(Range::all(),Range(0,m.cols/2)) = 1.0; //原来初始的掩码是在这里 m(Range(0,m.rows/2),Range::all())=1.0; Mat_<Vec3f> blend = LaplacianBlend(t,d, m);
imshow( "blended",blend); return blend;}
需要注意的是, m(Range(0,m.rows/2),Range::all())=1.0表明了原始图像的掩码,这个掩码就是那个分界的地方。
比如比如:
;
永达实际的项目上面,应该是这样。
在使用这种方法进行大规模拼接的时候,主要是两个问题
一个是效果,在上面的那个橘子苹果的例子中,只有前景的颜色有变化,实际上其它几个地方色彩亮度变化不是很大。但是对于实际情况下的拼接来说,亮度有变化,比较难以处理。
二是效率。laplacian需要大量的过程,造成结果内存的需求很大,一时半会很难优化好。multband看来只能够在符合要求的简单拼接中去实现使用。