我记得曾经有人对OpenCV的旋转吐槽,意思是它自己没有很好的关于选择的算法。在新的版本里面添加了这些函数(我还没有时间去看是什么时候pr的)。现在一个比较棘手的问题,就是OpenCV中旋转是如何定量的,什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度?
下面就是针对这几个问题,通过查资料、做实验的方式搞清楚。
一、OpenCV中旋转式如何定量的
也就是坐标系问题。OpenCV坐标系以(0,0)点为原点,以向下为Y轴正方向,以向右为X轴正方向。
对于旋转而言,通过“旋转中点”和“旋转的角度”两个值来定量一个“旋转”。
二、什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度?
一般来说,坐标系中以X轴正方向为原点,而以逆时针为正、顺时针为负。
至于什么时候用角度、什么时候用弧度,一般来说,角度180度对应于弧度的PI,由于在使用函数的时候,一般只能以数值类型(不带单位)作为参数,所以需要根据函数自己的要求选择弧度还是角度.
三、相关的函数和使用方法。
可能这才是最为关键的。我这样来归纳。和旋转相关的函数可以大致分为“获得旋转”和“使用旋转”两类。
“获得旋转”而言,旋转矩形、PCA都可以获得旋转;
“使用旋转”而言,可以使用放射变换
warpAffine
具体而言,包括以下内容:
1、
CV_EXPORTS_W
void rotate(InputArray src, OutputArray dst, int rotateCode);
这是OpenCV在新版本里面提供的选择函数,第3个参数是旋转的选择,具体如下
enum RotateFlags {
ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
ROTATE_180 = 1, //Rotate 180 degrees clockwise
ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
};
/** @brief Rotates a 2D array in multiples of 90 degrees.
The function rotate rotates the array in one of three different ways:
* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
@param src input array.
@param dst output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90 and ROTATE_270.
@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
@sa transpose , repeat , completeSymm, flip, RotateFlags
*/
ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise
ROTATE_180 = 1, //Rotate 180 degrees clockwise
ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise
};
/** @brief Rotates a 2D array in multiples of 90 degrees.
The function rotate rotates the array in one of three different ways:
* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90).
* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180).
* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270).
@param src input array.
@param dst output array of the same type as src. The size is the same with ROTATE_180,
and the rows and cols are switched for ROTATE_90 and ROTATE_270.
@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags
@sa transpose , repeat , completeSymm, flip, RotateFlags
*/
那么它存在的问题就是只能旋转具体的角度(90、180)等,不是很灵活
2、rotate修改
为了解决不是很灵活的问题,自己重新写的旋转函数,第3个参数直接是旋转的角度。
void rotate(
const Mat
& src, Mat
& dst,
float angle)
{
CV_Assert( !src.empty());
float radian = angle / 180. 0 * PI;
int uniSize = max(src.cols, src.rows) * 2;
int dx = (uniSize - src.cols) / 2;
int dy = (uniSize - src.rows) / 2;
copyMakeBorder(src, dst, dy, dy, dx, dx, BORDER_CONSTANT);
//旋转中心
Point2f center(dst.cols / 2, dst.rows / 2);
Mat affine_matrix = getRotationMatrix2D( center, angle, 1. 0 );
warpAffine(dst, dst, affine_matrix, dst.size());
float sinVal = fabs(sin(radian));
float cosVal = fabs(cos(radian));
//旋转后的图像大小
Size targetSize(src.cols * cosVal + src.rows * sinVal,src.cols * sinVal + src.rows * cosVal);
//剪掉四周边框
int x = (dst.cols - targetSize.width) / 2;
int y = (dst.rows - targetSize.height) / 2;
Rect rect(x, y, targetSize.width, targetSize.height);
dst = Mat(dst, rect);
}
{
CV_Assert( !src.empty());
float radian = angle / 180. 0 * PI;
int uniSize = max(src.cols, src.rows) * 2;
int dx = (uniSize - src.cols) / 2;
int dy = (uniSize - src.rows) / 2;
copyMakeBorder(src, dst, dy, dy, dx, dx, BORDER_CONSTANT);
//旋转中心
Point2f center(dst.cols / 2, dst.rows / 2);
Mat affine_matrix = getRotationMatrix2D( center, angle, 1. 0 );
warpAffine(dst, dst, affine_matrix, dst.size());
float sinVal = fabs(sin(radian));
float cosVal = fabs(cos(radian));
//旋转后的图像大小
Size targetSize(src.cols * cosVal + src.rows * sinVal,src.cols * sinVal + src.rows * cosVal);
//剪掉四周边框
int x = (dst.cols - targetSize.width) / 2;
int y = (dst.rows - targetSize.height) / 2;
Rect rect(x, y, targetSize.width, targetSize.height);
dst = Mat(dst, rect);
}
3、
getRotationMatrix2D函数
主要用于获得图像绕着 某一点的旋转矩阵
函数调用形式:
Mat getRotationMatrix2D(Point2f center, double angle, double scale)
参数详解:
Point2f center:表示旋转的中心点
double angle:表示旋转的
角度
double scale:图像缩放因子
例子
#
include
"opencv2/highgui/highgui.hpp"
# include "opencv2/imgproc/imgproc.hpp"
# include <iostream >
# include <stdio.h >
using namespace cv;
using namespace std;
/// 全局变量
char * source_window = "Source image";
char * warp_window = "Warp";
char * warp_rotate_window = "Warp + Rotate";
/** @function main */
int main( int argc, char * * argv )
{
Point2f srcTri[ 3];
Point2f dstTri[ 3];
Mat rot_mat( 2, 3, CV_32FC1 );
Mat warp_mat( 2, 3, CV_32FC1 );
Mat src, warp_dst, warp_rotate_dst;
/// 加载源图像
src = imread( argv[ 1], 1 );
/// 设置目标图像的大小和类型与源图像一致
warp_dst = Mat : :zeros( src.rows, src.cols, src.type() );
/// 设置源图像和目标图像上的三组点以计算仿射变换
srcTri[ 0] = Point2f( 0, 0 );
srcTri[ 1] = Point2f( src.cols - 1, 0 );
srcTri[ 2] = Point2f( 0, src.rows - 1 );
dstTri[ 0] = Point2f( src.cols * 0. 0, src.rows * 0. 33 );
dstTri[ 1] = Point2f( src.cols * 0. 85, src.rows * 0. 25 );
dstTri[ 2] = Point2f( src.cols * 0. 15, src.rows * 0. 7 );
/// 求得仿射变换
warp_mat = getAffineTransform( srcTri, dstTri );
/// 对源图像应用上面求得的仿射变换
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
/** 对图像扭曲后再旋转 */
/// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵
Point center = Point( warp_dst.cols / 2, warp_dst.rows / 2 );
double angle = - 50. 0;
double scale = 0. 6;
/// 通过上面的旋转细节信息求得旋转矩阵
rot_mat = getRotationMatrix2D( center, angle, scale );
/// 旋转已扭曲图像
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
/// 显示结果
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
imshow( warp_window, warp_dst );
namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
imshow( warp_rotate_window, warp_rotate_dst );
/// 等待用户按任意按键退出程序
waitKey( 0);
return 0;
}
# include "opencv2/imgproc/imgproc.hpp"
# include <iostream >
# include <stdio.h >
using namespace cv;
using namespace std;
/// 全局变量
char * source_window = "Source image";
char * warp_window = "Warp";
char * warp_rotate_window = "Warp + Rotate";
/** @function main */
int main( int argc, char * * argv )
{
Point2f srcTri[ 3];
Point2f dstTri[ 3];
Mat rot_mat( 2, 3, CV_32FC1 );
Mat warp_mat( 2, 3, CV_32FC1 );
Mat src, warp_dst, warp_rotate_dst;
/// 加载源图像
src = imread( argv[ 1], 1 );
/// 设置目标图像的大小和类型与源图像一致
warp_dst = Mat : :zeros( src.rows, src.cols, src.type() );
/// 设置源图像和目标图像上的三组点以计算仿射变换
srcTri[ 0] = Point2f( 0, 0 );
srcTri[ 1] = Point2f( src.cols - 1, 0 );
srcTri[ 2] = Point2f( 0, src.rows - 1 );
dstTri[ 0] = Point2f( src.cols * 0. 0, src.rows * 0. 33 );
dstTri[ 1] = Point2f( src.cols * 0. 85, src.rows * 0. 25 );
dstTri[ 2] = Point2f( src.cols * 0. 15, src.rows * 0. 7 );
/// 求得仿射变换
warp_mat = getAffineTransform( srcTri, dstTri );
/// 对源图像应用上面求得的仿射变换
warpAffine( src, warp_dst, warp_mat, warp_dst.size() );
/** 对图像扭曲后再旋转 */
/// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵
Point center = Point( warp_dst.cols / 2, warp_dst.rows / 2 );
double angle = - 50. 0;
double scale = 0. 6;
/// 通过上面的旋转细节信息求得旋转矩阵
rot_mat = getRotationMatrix2D( center, angle, scale );
/// 旋转已扭曲图像
warpAffine( warp_dst, warp_rotate_dst, rot_mat, warp_dst.size() );
/// 显示结果
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
namedWindow( warp_window, CV_WINDOW_AUTOSIZE );
imshow( warp_window, warp_dst );
namedWindow( warp_rotate_window, CV_WINDOW_AUTOSIZE );
imshow( warp_rotate_window, warp_rotate_dst );
/// 等待用户按任意按键退出程序
waitKey( 0);
return 0;
}
4、通过pca获得图像的弧度
double getOrientation(vector
<Point
>
&pts, Point2f
& pos,Mat
& img)
{
//Construct a buffer used by the pca analysis
Mat data_pts = Mat(pts.size(), 2, CV_64FC1);
for ( int i = 0; i < data_pts.rows; ++i)
{
data_pts.at < double >(i, 0) = pts[i].x;
data_pts.at < double >(i, 1) = pts[i].y;
}
//Perform PCA analysis
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//Store the position of the object
pos = Point2f(pca_analysis.mean.at < double >( 0, 0),
pca_analysis.mean.at < double >( 0, 1));
//Store the eigenvalues and eigenvectors
vector <Point2d > eigen_vecs( 2);
vector < double > eigen_val( 2);
for ( int i = 0; i < 2; ++i)
{
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at < double >(i, 0),
pca_analysis.eigenvectors.at < double >(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at < double >(i, 0);
}
return atan2(eigen_vecs[ 0].y, eigen_vecs[ 0].x);
}
{
//Construct a buffer used by the pca analysis
Mat data_pts = Mat(pts.size(), 2, CV_64FC1);
for ( int i = 0; i < data_pts.rows; ++i)
{
data_pts.at < double >(i, 0) = pts[i].x;
data_pts.at < double >(i, 1) = pts[i].y;
}
//Perform PCA analysis
PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
//Store the position of the object
pos = Point2f(pca_analysis.mean.at < double >( 0, 0),
pca_analysis.mean.at < double >( 0, 1));
//Store the eigenvalues and eigenvectors
vector <Point2d > eigen_vecs( 2);
vector < double > eigen_val( 2);
for ( int i = 0; i < 2; ++i)
{
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at < double >(i, 0),
pca_analysis.eigenvectors.at < double >(i, 1));
eigen_val[i] = pca_analysis.eigenvalues.at < double >(i, 0);
}
return atan2(eigen_vecs[ 0].y, eigen_vecs[ 0].x);
}
这个函数的目的,在于通过PCA方法,获得当前轮廓的主要方向。
5、直接获得
某点旋转以后位置,这个地方使用的是弧度
//获得单个点经过旋转后所在精确坐标
Point2f GetPointAfterRotate(Point2f inputpoint,Point2f center, double angle){
Point2d preturn;
preturn.x = (inputpoint.x - center.x) *cos( -angle) - (inputpoint.y - center.y) *sin( -angle) +center.x;
preturn.y = (inputpoint.x - center.x) *sin( -angle) + (inputpoint.y - center.y) *cos( -angle) +center.y;
return preturn;
}
Point2f GetPointAfterRotate(Point2f inputpoint,Point2f center, double angle){
Point2d preturn;
preturn.x = (inputpoint.x - center.x) *cos( -angle) - (inputpoint.y - center.y) *sin( -angle) +center.x;
preturn.y = (inputpoint.x - center.x) *sin( -angle) + (inputpoint.y - center.y) *cos( -angle) +center.y;
return preturn;
}
此外值得注意的一点就是,其实我们可以不基于OpenCV函数,直接计算某点旋转以后位置,采用的是数学方法。
四、使用例子
综合使用,请查看:
感谢阅读至此,希望有所帮助。