• 二叉树的java实现


    复制代码
    import java.util.Arrays;
    import java.util.Stack;
    
    
    // 链式存储的二叉树
    public class BSTree {
        private TreeNode root = null;
        public TreeNode getRoot() {
            return root;
        }
        public BSTree(TreeNode root) {
            this.root = root;
        }
        
        public boolean isEmpty() {
            return root == null;
        }
    
        // 树的高度
        public int height() {
            return TreeNode.height(root);
        }
    
        // 节点个数
        public int size() {
            return TreeNode.size(root);
        }
    
        // 返回树中某节点的父节点
        public TreeNode parent(TreeNode element) {
            return (root == null || root == element) ? null : TreeNode.getParent(root, element);
        }
    
        
        // 定义树的节点
        private static class TreeNode {
            private int data;
            private TreeNode leftChild = null;
            private TreeNode rightChild = null;
            
            public TreeNode(int data) {
                this.data = data;
                this.leftChild = null;
                this.rightChild = null;
            }
            
            public static TreeNode getParent(TreeNode subTree, TreeNode element) {
                if (subTree == null)
                    return null;
                if (subTree.leftChild == element || subTree.rightChild == element)
                    return subTree;
                TreeNode p = null;
                // 递归左右子树
                if ((p = getParent(subTree.leftChild, element)) != null)
                    return p;
                else
                    return getParent(subTree.rightChild, element);
            }
    
            public static TreeNode getLeftChildNode(TreeNode element) {
                return (element != null) ? element.leftChild : null;
            }
    
            public static TreeNode getRightChildNode(TreeNode element) {
                return (element != null) ? element.rightChild : null;
            }
            
            public static int height(TreeNode subTree) {
                if (subTree == null)
                    return 0;// 递归结束:空树高度为0
                else {
                    int i = height(subTree.leftChild);
                    int j = height(subTree.rightChild);
                    return (i < j) ? (j + 1) : (i + 1);
                }
            }
            
            public static int size(TreeNode subTree) {
                if (subTree == null) {
                    return 0;
                } else {
                    return 1 + size(subTree.leftChild) + size(subTree.rightChild);
                }
            }
            
            // 在释放某个结点前, 该结点的左右子树应该已经释放, 所以应该采用后续遍历
            public static void destroySubTree(TreeNode subTree) {
                // 删除根为subTree的子树
                if (subTree != null) {
                    destroySubTree(subTree.leftChild);
                    destroySubTree(subTree.rightChild);
                    // 删除根结点
                    subTree = null;
                }
            }
            
            
            public static void visted(TreeNode subTree) {
                System.out.println("data: " + subTree.data);
            }
            
            // 前序遍历
            public static void preOrder(TreeNode subTree) {
                if (subTree != null) {
                    visted(subTree);
                    preOrder(subTree.leftChild);
                    preOrder(subTree.rightChild);
                }
            }
    
            // 中序遍历
            public static void inOrder(TreeNode subTree) {
                if (subTree != null) {
                    inOrder(subTree.leftChild);
                    visted(subTree);
                    inOrder(subTree.rightChild);
                }
            }
    
            // 后续遍历
            public static void postOrder(TreeNode subTree) {
                if (subTree != null) {
                    postOrder(subTree.leftChild);
                    postOrder(subTree.rightChild);
                    visted(subTree);
                }
            }
            
            // 前序遍历的非递归实现
            public static void nonRecPreOrder(TreeNode subTree) {
                Stack<TreeNode> stack = new Stack<TreeNode>();
                TreeNode node = subTree;
                while (node != null || stack.size() > 0) {
                    if (node != null) {
                        visted(node);
                        stack.push(node);
                        node = node.leftChild;
                    } else {
                        node = stack.pop();
                        node = node.rightChild;
                    }
                }
            }
    
            // 中序遍历的非递归实现
            public static void nonRecInOrder(TreeNode subTree) {
                Stack<TreeNode> stack = new Stack<TreeNode>();
                TreeNode node = subTree;
                while (node != null || stack.size() > 0) {
                    // 存在左子树
                    if (node != null) {
                        stack.push(node);
                        node = node.leftChild;
                    }
                    else {
                        node = stack.pop();
                        visted(node);
                        node = node.rightChild;
                    }
                }
            }
    
            // 后序遍历的非递归实现
            public static void nonRecPostOrder(TreeNode subTree) {
                if (null == subTree) { //为确保下面循环至少执行一次
                    return;  
                }
                Stack<TreeNode> stack = new Stack<TreeNode>();
                TreeNode node = subTree;
                TreeNode lastVisited = subTree;
                while (true) {
                    // 左路入栈
                    while (node.leftChild != null) {
                        stack.push(node);    //第一次压栈, 为了访问左路后退出
                        node = node.leftChild;
                    }
                    // 连续处理从右路返回的节点
                    while (node.rightChild == null || node.rightChild == lastVisited) {
                        // 访问并纪录本次访问节点
                        visted(node);
                        lastVisited = node;
                        if (stack.empty()) {
                            return;
                        }
                        node = stack.pop();
                    }
                    // 处理从左路返回的节点
                    stack.push(node);  // 第二次压栈, 为了访问右路后退出
                    node = node.rightChild;
                }
            }
        }
        
        
        // 二叉搜索树
        public void add(int data) {
            add(root, data);
        }
        
        public boolean contains(int data) {
            return contains(root, data);
        }
        
        public int minValue() {
            return findMin(root).data;
        }
        
        public int maxValue() {
            return findMax(root).data;
        }
        
        private TreeNode findMin(TreeNode subTree) {
            if (null == subTree) {
                return null;
            } else if (null == subTree.leftChild) {
                return subTree;
            }
            return findMin(subTree.leftChild);
        }
    
        private TreeNode findMax(TreeNode subTree) {
            if (null != subTree) {
                while (null != subTree.rightChild) {
                    subTree = subTree.rightChild;
                }
            }
            return subTree;
        }
        // 添加节点进搜索树
        private TreeNode add(TreeNode subTree, int data) {
            if (null == subTree) {
                return new TreeNode(data);
            } else if (data > subTree.data) {
                subTree.rightChild = add(subTree.rightChild, data);
                return subTree;
            } else if (data < subTree.data) {
                subTree.leftChild = add(subTree.leftChild, data);
                return subTree;
            } // 这里限定搜索树中元素不重复
            return subTree;
        }
    
        private boolean contains(TreeNode subTree, int data) {
            if (null == subTree) {
                return false;
            } else if (data > subTree.data) {
                    return contains(subTree.rightChild, data);
            } else if (data < subTree.data){
                    return contains(subTree.leftChild, data);
            } else {
                return true;
            }
        }
        
        private TreeNode remove(TreeNode subTree, int data) {
            if (null == subTree) {
                return null;
            } else if (data > subTree.data) {
                return remove(subTree.rightChild, data);
            } else if (data < subTree.data) {
                return remove(subTree.leftChild, data);
            } else if (null == subTree.leftChild || null == subTree.rightChild) {  //节点匹配, 只有一个孩子或没有孩子
                return (subTree.leftChild != null) ? subTree.leftChild : subTree.rightChild; 
            } else {      //节点匹配, 有两个孩子
                subTree.data = findMin(subTree.rightChild).data;
                subTree.rightChild = remove(subTree.rightChild, subTree.data);
                return subTree;
            }
        }
        
        // 测试
        public static void main(String[] args) {
            // 创建树
            int[] values = new int[8];
            for (int i = 0; i < 8; i++) {
                int num = (int) (Math.random() * 15);
                if (!checkDup(values, num))
                    values[i] = num;
                else
                    i--;
            }
            System.out.println("generate Nums:" + Arrays.toString(values));
    
            BSTree tree = new BSTree(new TreeNode(values[0]));
            for (int i = 1; i < values.length; i++) {
                tree.add(values[i]);
            }
    
            System.out.println("树高: " + TreeNode.height(tree.getRoot()));
            System.out.println("树大小: " + TreeNode.size(tree.getRoot()));
            System.out.println("前序遍历:");
            TreeNode.nonRecPreOrder(tree.getRoot());
            System.out.println("中序遍历:");
            TreeNode.nonRecInOrder(tree.getRoot());
            System.out.println("后序遍历:");
            TreeNode.nonRecPostOrder(tree.getRoot());
        }
        private static boolean checkDup(int[] arr, int value) {
            for (int i = 0; i < arr.length; i++) {
                if (arr[i] == value)
                    return true;
            }
            return false;
        }
        
    }
    复制代码
  • 相关阅读:
    uploadify插件的功能应用
    dropify插件的字符串
    VCC、VDD和VSS
    Bootloader升级方式一————擦、写flash在RAM中运行
    Can DBC文件翻译
    CANdbc编辑器的下载和入门介绍
    CAN协议,系统结构和帧结构
    数据帧
    自动驾驶技术之——无人驾驶中的CAN总线
    can物理信号-----------显性和隐性
  • 原文地址:https://www.cnblogs.com/jswang/p/9054951.html
Copyright © 2020-2023  润新知