题目:Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
思路:动态规划
核心思路是dp[i][j]=min{dp[i-1][j]+dp[i][j-1]}+table[i][j].
当前位置的最小和等于左边和右边位置最小和两者的小者+本方格数值。
代码:
class Solution { public: //https://leetcode.com/problems/minimum-path-sum/ int minPathSum(vector<vector<int> >& grid) { int m=grid.size(),n=grid[0].size(); if(m==0||n==0){ return 0; } // int sum[m][n]; for(int j=1;j<n;j++){ grid[0][j]=grid[0][j-1]+grid[0][j]; } for(int i=1;i<m;i++){ grid[i][0]=grid[i-1][0]+grid[i][0]; } for(int i=1;i<m;i++){ for(int j=1;j<n;j++){ grid[i][j]=min(grid[i-1][j],grid[i][j-1])+grid[i][j]; } } return grid[m-1][n-1]; } };