• 安卓杂记(四)利用自定义的PolyBezier()函数将一系列散点绘制成光滑曲线(二)


    上一节讲到如何利用canvas画出两点之间的贝塞尔曲线,那么如何连接多点于一条光滑曲线呢?

    所谓众里寻他千百度,那人却在灯火阑珊处,大浪淘沙般,谜底终呼之欲出——PolyBezier()函数。

    三.PolyBezier()函数详解

      由图形学知识知道一段Bezier曲线由4个控制点p0,p1,p2,p3决定,该曲线经过p0和p3点,即该曲线起于p0点,终于p3点。一条经过鼠标点击点的曲线就可以由多段的Bezier曲线连续而成。
     
    以绘制图1中曲线为例,该曲线由两段构成,p0~p3段和p4~p7段,不难看出

    p3=p4,即前段曲线的终点是后段曲线的起点。

       lpPoints结构中会顺序存储p0,p1,p2,p3(p4),p5,p6,p7七个点。

    其中p0,p3(p4),p7是已知的,也就是在鼠标绘图过程中p0,p3(p4),p7都是鼠标经过点,已知需要根据这3点反求控制点p1,p2,p5,p6.

       这里可用两端Bezier曲线连续的条件,即p1p0连线即为曲线在p0处切线,p2p3连线为p3处切线,p4p5为p4处切线,p6p7为p7处切线,两段曲线连续(这里用的是一阶连续条件)必然要求p2p3与p4p5在一条线上。端点处可令其倒数为0,即可算得控制点。

    根据条件可算得

         p1.x=p0.x;

         p1.y=p0.y;

         p2.x=(p0.x+4*p3.x-p7.x)/4;

         p2.y=(p0.y+4*p3.y-p7.y)/4;

         p5.x=(4*p3.x+p7.x-p0.x)/4;

         p5.y=(4*p3.y+p7.y-p0.y)/4;

         p6.x=p7.x;

         p6.y=p7.y;//一阶倒在端点处为0

    所得公式即为PolyBezier的精髓。

    然而,在Android中并不提供此函数,需要我们自己定义,好在我们获得了上述公式。

    可以每次获取三个点,即p0, p3, p7,因p1与p0的横纵坐标相同,权且不与理会。故只需算出p2即可。利用算得的p2坐标,画出p0与p3之间的贝塞尔曲线。更新p0, p3, p7,即获取一点p11, 令p0 = p3, p3 = p7, p7 = p11,重新绘制p0与p3之间的贝塞尔曲线。直到p7为最后一个点,因p3与p7之间的贝塞尔曲线未画,故可以反过来,令交换p0与p7的值,就可以重复上述步骤。

    代码示例如下:

    private void polyBezier(Point numList[], int count, Canvas can, Paint mPaint){
        	float startX, startY, conX, conY;
        	
        	Path tempPath = new Path();
        	Paint tmpPaint = new Paint(mPaint); 
            tmpPaint.setStrokeWidth(1); 
        	
        	float medX = numList[0].x;
        	float medY = numList[0].y;
       
        	
        	float endX = numList[1].x;
        	float endY = numList[1].y;
        
    
            for(int i = 2; i < count ; i++){
            	startX = medX;
            	startY = medY;
            	
            	medX = endX;
            	medY = endY;
            	
            	endX = numList[i].x;;
            	endY = numList[i].y;        	
            	conX = (startX + 4 * medX - endX) / 4.0f;
            	conY = (startY + 4 * medY - endY) / 4.0f;
            	
            	tempPath.moveTo(startX, startY);
            	tempPath.quadTo(conX, conY, medX, medY);
            	can.drawPath(tempPath, tmpPaint);
            	
            	if (i == count - 1){
                    conX = (4 * medX + endX - startX) / 4.0f;
                    conY = (4 * medY + endY - startY) / 4.0f;
                    tempPath.moveTo(medX, medY);
                	tempPath.quadTo(conX, conY, endX, endY);
                	can.drawPath(tempPath, tmpPaint);
                	
            	}
            }
         
        }

    那具体如何运用呢,下一节将会用一个实例示之。

     
  • 相关阅读:
    navicat连接虚拟机中mysql"Access denied for user'root'@'IP地址'"问题
    Centos6.4 + mysql-5.6.38-linux-glibc2.12-x86_64.tar 实现mysql主从复制
    三、mock测试技术
    二、数据加密
    一.unittest框架初识
    3.Allure报告
    2.pytest参数化
    1.pytest框架初识
    RabbitMQ 几种工作模式---(三) Publish/Subscribe
    RabbitMQ 几种工作模式---(二)work
  • 原文地址:https://www.cnblogs.com/jscitlearningshare/p/4340646.html
Copyright © 2020-2023  润新知