• 马士兵hadoop第五课:java开发Map/Reduce(转)


    马士兵hadoop第一课:虚拟机搭建和安装hadoop及启动

    马士兵hadoop第二课:hdfs集群集中管理和hadoop文件操作

    马士兵hadoop第三课:java开发hdfs

    马士兵hadoop第四课:Yarn和Map/Reduce配置启动和原理讲解

    马士兵hadoop第五课:java开发Map/Reduce

    配置系统环境变量HADOOP_HOME,指向hadoop安装目录(如果你不想招惹不必要的麻烦,不要在目录中包含空格或者中文字符)
    把HADOOP_HOME/bin加到PATH环境变量(非必要,只是为了方便)
    如果是在windows下开发,需要添加windows的库文件
    把盘中共享的bin目录覆盖HADOOP_HOME/bin
    如果还是不行,把其中的hadoop.dll复制到c:windowssystem32目录下,可能需要重启机器
    建立新项目,引入hadoop需要的jar文件

    代码WordMapper:

    复制代码
    import java.io.IOException;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;

    public class WordMapper extends Mapper<LongWritable,Text, Text, IntWritable> {

    @Override</br>
    </span><span style="color: #0000ff">protected</span> <span style="color: #0000ff">void</span> map(LongWritable key, Text value, Mapper&lt;LongWritable, Text, Text, IntWritable&gt;<span style="color: #000000">.Context context)</br>
            </span><span style="color: #0000ff">throws</span><span style="color: #000000"> IOException, InterruptedException {</br>
        String line </span>=<span style="color: #000000"> value.toString();</br>
        String[] words </span>= line.split(" "<span style="color: #000000">);</br>
        </span><span style="color: #0000ff">for</span><span style="color: #000000">(String word : words) {</br>
            context.write(</span><span style="color: #0000ff">new</span> Text(word), <span style="color: #0000ff">new</span> IntWritable(1<span style="color: #000000">));
        }</br>
    }</br>
    

    }

    复制代码

    代码WordReducer:

    复制代码
    import java.io.IOException;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;

    public class WordReducer extends Reducer<Text, IntWritable, Text, LongWritable> {

    @Override</br>
    </span><span style="color: #0000ff">protected</span> <span style="color: #0000ff">void</span> reduce(Text key, Iterable&lt;IntWritable&gt;<span style="color: #000000"> values,</br>
            Reducer</span>&lt;Text, IntWritable, Text, LongWritable&gt;.Context context) <span style="color: #0000ff">throws</span><span style="color: #000000"> IOException, InterruptedException {</br>
        </span><span style="color: #0000ff">long</span> count = 0<span style="color: #000000">;</br>
        </span><span style="color: #0000ff">for</span><span style="color: #000000">(IntWritable v : values) {</br>
            count </span>+=<span style="color: #000000"> v.get();</br>
        }</br>
        context.write(key, </span><span style="color: #0000ff">new</span><span style="color: #000000"> LongWritable(count));</br>
    }</br>
    

    }

    复制代码

    代码Test:

    复制代码
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

    public class Test {

    public static void main(String[] args) throws Exception {

    Configuration conf
    = new Configuration();

        Job job </span>=<span style="color: #000000"> Job.getInstance(conf);</br></br>
         
        job.setMapperClass(WordMapper.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br>
        job.setReducerClass(WordReducer.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br>
        job.setMapOutputKeyClass(Text.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br>
        job.setMapOutputValueClass(IntWritable.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br>
        job.setOutputKeyClass(Text.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br>
        job.setOutputValueClass(LongWritable.</span><span style="color: #0000ff">class</span><span style="color: #000000">);</br></br>
         
        FileInputFormat.setInputPaths(job, </span>"c:/bigdata/hadoop/test/test.txt"<span style="color: #000000">);</br>
        FileOutputFormat.setOutputPath(job, </span><span style="color: #0000ff">new</span> Path("c:/bigdata/hadoop/test/out/"<span style="color: #000000">));</br></br>
         
        job.waitForCompletion(</span><span style="color: #0000ff">true</span><span style="color: #000000">);</br>
    }</br>
    

    }

    复制代码

    把hdfs中的文件拉到本地来运行

    FileInputFormat.setInputPaths(job, "hdfs://master:9000/wcinput/");
    FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000/wcoutput2/"));

    注意这里是把hdfs文件拉到本地来运行,如果观察输出的话会观察到jobID带有local字样
    同时这样的运行方式是不需要yarn的(自己停掉yarn服务做实验)
    在远程服务器执行

    复制代码
    conf.set("fs.defaultFS", "hdfs://master:9000/");
    

    conf.set("mapreduce.job.jar", "target/wc.jar");

    conf.set(
    "mapreduce.framework.name", "yarn");

    conf.set(
    "yarn.resourcemanager.hostname", "master");

    conf.set(
    "mapreduce.app-submission.cross-platform", "true");

    FileInputFormat.setInputPaths(job, "/wcinput/");

    FileOutputFormat.setOutputPath(job,
    new Path("/wcoutput3/"));

    复制代码

    如果遇到权限问题,配置执行时的虚拟机参数-DHADOOP_USER_NAME=root
    也可以将hadoop的四个配置文件拿下来放到src根目录下,就不需要进行手工配置了,默认到classpath目录寻找
    或者将配置文件放到别的地方,使用conf.addResource(.class.getClassLoader.getResourceAsStream)方式添加,不推荐使用绝对路径的方式

    原文地址:http://www.cnblogs.com/yucongblog/p/6650872.html
  • 相关阅读:
    通过索引优化sql
    索引概述
    Spring整合Mybatis
    Mybatis逆向工程
    Mybatis级联
    Mybatis动态语句
    Mybatis—curd
    (转)最大似然估计&贝叶斯估计
    筛法求质——poj2262&2909
    (转)poj1182食物链
  • 原文地址:https://www.cnblogs.com/jpfss/p/9034795.html
Copyright © 2020-2023  润新知