• 胶体电荷重整化


    Alexander描述

    参考 Langmuir 2003, 19, 4027-4033

    胶体粒子为球形,半径为(a),带电为(-Ze),cell半径为(R)

    在一个cell里,局域无量纲电势满足PB方程:
    egin{equation}
    abla2phi(r)=kappa_{res}2sinhphi(r)
    label{eq:PB} end{equation}
    边界条件:

    [vec{n} cdot abla phi(r)|\_{r=a}=frac{Z lambda_B}{a^2} ]

    [vec{n}cdot ablaphi(r)|_{r=R}=0 ]

    把方程( ef{eq:PB})线性化,即在(phi(R)=phi_R)处将其展开。

    方程( ef{eq:PB})左边

    [ abla^2phi(r)= abla^2(phi(r)-phi_R)= abla^2widetilde{phi}(r) ]

    方程( ef{eq:PB})右边
    egin{equation}
    egin{split}
    kappa_{res}2sinhphi(r)&=kappa_{res}2[sinhphi_R+coshphi_R(phi(r)-phi_R)]
    &=kappa_{res}^2coshphi_R[ anhphi_R+widetilde{phi}(r)]
    &=kappa_{res}^2coshphi_R[gamma_0+widetilde{phi}(r)]
    &=kappa_{PB}^2[gamma_0+widetilde{phi}(r)]
    end{split}
    end{equation}
    将以上两式合在一起,得线性化的PB方程:
    egin{equation}
    abla2widetilde{phi}(r)=frac{1}{r2}frac{d}{dr}left [r^2frac{d}{dr}widetilde{phi}(r) ight ]=kappa_{PB}^2[gamma_0+widetilde{phi}(r)]
    label{eq:LPB} end{equation}
    边界条件:

    [widetilde{phi}(r)|\_{r=R}=0 ]

    [vec{n}cdot ablawidetilde{phi}(r)|\_{r=R}=0 ]

    方程 ef{eq:LPB}的解为

    [widetilde{phi}(r)=gamma_0left [-1+frac{kappa_{PB}+1}{2kappa\_{PB}}e^{-kappa_{PB}R}frac{e^{kappa_{PB}r}}{r}+frac{kappa_{PB}-1}{2kappa\_{PB}}e^{kappa_{PB}R}frac{e^{-kappa_{PB}r}}{r} ight ] ]

    根据下式计算等效电量(Effective charge, Renormalized charge):

    [frac{dwidetilde{phi}(r)}{dr}Bigg|\_{r=a}=frac{Z\_{eff}lambda_B}{a^2} ]


    egin{equation}
    Z_{eff}=frac{gamma_0}{lambda_B kappa_{PB}}{(kappa_{PB}^2aR-1)sinh[kappa_{PB}(R-a)]+kappa_{PB}(R-a)cosh[kappa_{PB}(R-a)]}
    label{eq:Zeff}
    end{equation}

    计算(Z_{eff})步骤:

    1. 解方程( ef{eq:PB}),得(phi_R)
    2. 计算(kappa_{PB}^2=kappa_{res}^2coshphi_R)
    3. 带入方程( ef{eq:Zeff}),计算(Z_{eff})

    Renormalized jellium model

    参考:

    • PHYSICAL REVIEW E 69, 031403 (2004)
    • THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)
    • THE JOURNAL OF CHEMICAL PHYSICS 133, 234105 (2010)

    假设胶体离子均匀分布,作为小离子分布的背景。Poisson-Boltzmann方程:
    egin{equation}
    abla2phi(r)=4pilambda_BZ_{back} ho+kappa_{res}2sinhphi(r)
    label{eq:RJPB} end{equation}
    其中,( ho)为胶体平均密度,

    [kappa_{res}^2=8pilambda_B sinhphi(infty) ]

    边界条件:

    [vec{n}cdot abla phi(r)|\_{r=a}=frac{Zlambda_B}{a^2} ]

    [vec{n}cdot abla phi(r)|_{r=infty}=0 ]

    并有

    [4pilambda_B Z_{back} ho+kappa_{res}^2sinhphi(infty)=0 ]

    等效电荷(Z_{eff}=Z_{back})

    需要用迭代法求出(Z_{eff}),见THE JOURNAL OF CHEMICAL PHYSICS 126, 014702 (2007)。

  • 相关阅读:
    ADO.NET 核心对象简介
    ASP.net 内置对象
    行内元素,块级元素与空元素
    ASP.net 常用服务器控件
    javaScript 基础知识
    点击超链接 唤醒企鹅添加好友代码
    使用CSS画出三角形
    NGUI实现的一套不同大小 Item 的循环滚动代码
    xlua怎么样hotfix C#中的重写方法???
    C# ---- GC中代的递增规律
  • 原文地址:https://www.cnblogs.com/joyfulphysics/p/4623001.html
Copyright © 2020-2023  润新知