• 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试


    相关随笔:

    MapReduce与HDFS简介

    什么是Hadoop?

    Google为自己的业务需要提出了编程模型MapReduce和分布式文件系统Google File System,并发布了相关论文(可在Google Research的网站上获得: GFSMapReduce)。 Doug Cutting和Mike Cafarella在开发搜索引擎Nutch时对这两篇论文做了自己的实现,即同名的MapReduce和HDFS,合起来就是Hadoop。

    MapReduce的Data flow如下图,原始数据经过mapper处理,再进行partition和sort,到达reducer,输出最后结果。

    图片来自Hadoop: The Definitive Guide

    Hadoop Streaming原理

    Hadoop本身是用Java开发的,程序也需要用Java编写,但是通过Hadoop Streaming,我们可以使用任意语言来编写程序,让Hadoop运行。

    Hadoop Streaming的相关源代码可以在Hadoop的Github repo 查看。简单来说,就是通过将用其他语言编写的mapper和reducer通过参数传给一个事先写好的Java程序(Hadoop自带的*-streaming.jar),这个Java程序会负责创建MR作业,另开一个进程来运行mapper,将得到的输入通过stdin传给它,再将mapper处理后输出到stdout的数据交给Hadoop,partition和sort之后,再另开进程运行reducer,同样地通过stdin/stdout得到最终结果。因此,我们只需要在其他语言编写的程序里,通过stdin接收数据,再将处理过的数据输出到stdout,Hadoop streaming就能通过这个Java的wrapper帮我们解决中间繁琐的步骤,运行分布式程序。

    图片来自Hadoop: The Definitive Guide

    原理上只要是能够处理stdio的语言都能用来写mapper和reducer,也可以指定mapper或reducer为Linux下的程序(如awk、grep、cat)或者按照一定格式写好的java class。因此,mapper和reducer也不必是同一类的程序。

    Hadoop Streaming的优缺点

    • 优点
      • 可以使用自己喜欢的语言来编写MapReduce程序(换句话说,不必写Java XD)
      • 不需要像写Java的MR程序那样import一大堆库,在代码里做一大堆配置,很多东西都抽象到了stdio上,代码量显著减少
      • 因为没有库的依赖,调试方便,并且可以脱离Hadoop先在本地用管道模拟调试
    • 缺点
      • 只能通过命令行参数来控制MapReduce框架,不像Java的程序那样可以在代码里使用API,控制力比较弱,有些东西鞭长莫及
      • 因为中间隔着一层处理,效率会比较慢

    所以Hadoop Streaming比较适合做一些简单的任务,比如用python写只有一两百行的脚本。如果项目比较复杂,或者需要进行比较细致的优化,使用Streaming就容易出现一些束手束脚的地方。

    用python编写简单的Hadoop Streaming程序

    这里提供两个例子:

    1. Michael Noll的word count程序
    2. Hadoop: The Definitive Guide里的例程

    使用python编写Hadoop Streaming程序有几点需要注意:

    1. 在能使用iterator的情况下,尽量使用iterator,避免将stdin的输入大量储存在内存里,否则会严重降低性能
    2. streaming不会帮你分割key和value传进来,传进来的只是一个个字符串而已,需要你自己在代码里手动调用split()
    3. 从stdin得到的每一行数据末尾似乎会有 ,保险起见一般都需要使用rstrip()来去掉
    4. 在想获得K-V list而不是一个个处理key-value pair时,可以使用groupby配合itemgetter将key相同的k-v pair组成一个个group,得到类似Java编写的reduce可以直接获取一个Text类型的key和一个iterable作为value的效果。注意itemgetter的效率比lambda表达式要高,所以如果需求不是很复杂的话,尽量用itemgetter比较好。

    我在编写Hadoop Streaming程序时的基本模版是

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    """
    Some description here...
    """
    
    import sys
    from operator import itemgetter
    from itertools import groupby
    
    
    def read_input(file):
        """Read input and split."""
        for line in file:
            yield line.rstrip().split('	')
    
    
    def main():
        data = read_input(sys.stdin)
        for key, kviter in groupby(data, itemgetter(0)):
            # some code here..
    
    
    if __name__ == "__main__":
        main()

    如果对输入输出格式有不同于默认的控制,主要会在read_input()里调整。

    本地调试

    本地调试用于Hadoop Streaming的python程序的基本模式是:

    $ cat <input path> | python <path to mapper script> | sort -t $'	' -k1,1 | python <path to reducer script> > <output path>

    或者如果不想用多余的cat,也可以用<定向

    $ python <path to mapper script> < <input path> | sort -t $'	' -k1,1 | python <path to reducer script> > <output path>

    这里有几点需要注意:

    1. Hadoop默认按照tab来分割key和value,以第一个分割出的部分为key,按key进行排序,因此这里使用

      sort -t $'	' -k1,1

      来模拟。如果你有其他需求,在交给Hadoop Streaming执行时可以通过命令行参数调,本地调试也可以进行相应的调整,主要是调整sort的参数。因此为了能够熟练进行本地调试,建议先掌握sort命令的用法。

    2. 如果你在python脚本里加上了shebang,并且为它们添加了执行权限,也可以用类似于

      ./mapper.py

      来代替

      python mapper.py

    推荐阅读

    Hadoop Streaming的官方文档,建议通读
    Recommendations with hadoop streaming and python

  • 相关阅读:
    IOS开发-点击View取消键盘输入
    IOS读写Plist文件最简单方法
    谷歌眼镜Mirror app开发之简单新闻浏览页面
    Shell下获取Android设备信息
    PhpStrom与PyCharm的激活码
    python之数据类型的转换(eval,json.dumps,json.loads)
    网络安全基础2--网络协议,服务,安全
    网络安全基础1
    第二条用例需要用到第一条用例返回结果中的某些值
    python更新字典下嵌套数组下嵌套字典的值
  • 原文地址:https://www.cnblogs.com/joyeecheung/p/3757915.html
Copyright © 2020-2023  润新知