package LeetCode_313 import java.util.* import kotlin.collections.HashSet /** * 313. Super Ugly Number * https://leetcode.com/problems/super-ugly-number/ * A super ugly number is a positive integer whose prime factors are in the array primes. Given an integer n and an array of integers primes, return the nth super ugly number. The nth super ugly number is guaranteed to fit in a 32-bit signed integer. Example 1: Input: n = 12, primes = [2,7,13,19] Output: 32 Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12 super ugly numbers given primes = [2,7,13,19]. Example 2: Input: n = 1, primes = [2,3,5] Output: 1 Explanation: 1 has no prime factors, therefore all of its prime factors are in the array primes = [2,3,5]. Constraints: 1. 1 <= n <= 106 2. 1 <= primes.length <= 100 3. 2 <= primes[i] <= 1000 4. primes[i] is guaranteed to be a prime number. 5. All the values of primes are unique and sorted in ascending order. * */ class Solution { /* * solution: use priority queue to keep the nth ugly number, and use Long to Maintain the accuracy of new ugly number; * Time complexity: O(n log(n*k)), k is the size of primes; * Space complexity: O(n) * */ fun nthSuperUglyNumber(n: Int, primes: IntArray): Int { if (n == 1) { return 1 } val queue = PriorityQueue<Long>() val set = HashSet<Long>() var result = 1L queue.offer(result) set.add(result) for (prime in primes) { queue.offer(prime.toLong()) set.add(prime.toLong()) } for (i in 0 until n) {//log(n) result = queue.poll()//log(k) for (prime in primes) { val multi:Long = prime.toLong() * result //contains of set run in O(1) time, contains of queue run in O(n) time if (!set.contains(multi)) { set.add(multi) queue.offer(multi)//log(k) } } } return result.toInt() } }