Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 27746 | Accepted: 10687 |
Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6
Source
差分约束系统是线性规划中的一种,在一个差分约束系统中,可以看成一个矩阵乘以一个向量小于另一个向量,求其中向量两个坐标的距离关系,约束条件对的不等式和单元最短路的松弛操作十分类似!
抽象出节点,根据节点性质和题目信息建边,最短路即可。
注意一定<=建边!
如果出现负权回路说明无解!
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<sstream> #include<algorithm> #include<queue> #include<deque> #include<iomanip> #include<vector> #include<cmath> #include<map> #include<stack> #include<set> #include<functional> #include<memory> #include<list> #include<string> using namespace std; typedef long long LL; typedef unsigned long long ULL; //[a,b]区间内至少有c个数在集合内,问集合最少包含多少点 //a,b 可以取0 再读入的时候手动 a++,b++ //定义ti 为[0,i]内至少有多少个数字,那么由ta-1 - tb <= -c //由ti的定义可以推出它的性质1.ti-ti+1<=0 ti+1-ti<=1 const int MAXM = 3*50000 + 6; const int MAXN = 50000 + 6; struct edge { LL to, next, dis; }E[MAXM]; LL head[MAXN],tot; LL dist[MAXN]; bool vis[MAXN]; void init() { tot = 0; memset(head, -1, sizeof(head)); } void spfa(LL ed) { memset(dist, 0x3f3f3f3f, sizeof(dist)); memset(vis, false, sizeof(vis)); queue<LL> q; q.push(0); vis[0] = true; dist[0] = 0; while (!q.empty()) { LL f = q.front(); q.pop(); vis[f] = false; for (LL i = head[f]; i != -1; i = E[i].next) { LL v = E[i].to, d = E[i].dis; if (dist[v] > dist[f] + d) { dist[v] = dist[f] + d; if (!vis[v]) { vis[v] = true; q.push(v); } } } } cout << -dist[ed] << endl; } void addedge(LL u, LL v, LL d) { E[tot].to = v; E[tot].dis = d; E[tot].next = head[u]; head[u] = tot++; } int main() { ios::sync_with_stdio(0); init(); LL f, t, d, ed; LL n; cin >> n; while (n--) { cin >> f >> t >> d; f++, t++; addedge(f - 1, t, -d); ed = max(t, ed); } for (int i = 0; i < ed; i++) { addedge(i, i + 1, 0); addedge(i + 1, i, 1); } spfa(ed); }