• 62. Unique Paths i & ii


    62. Unique Paths

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    DP  注意边界

    public class Solution {
        public int uniquePaths(int m, int n) {
            int dp[][] = new int[n][m];
            for(int i = 0 ; i < n ; i++){
              dp[i][0] = 1;
            }
            for(int j = 0 ; j < m ; j ++){
              dp[0][j] = 1;      
            }
            for(int i = 1; i < n ; i++){
                for(int j = 1 ; j < m ; j++){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
            return dp[n-1][m-1];
        }
    }

    63. Unique Paths II

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,

    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
      [0,0,0],
      [0,1,0],
      [0,0,0]
    ]
    

    The total number of unique paths is 2.

    public class Solution {
        public int uniquePathsWithObstacles(int[][] obstacleGrid) {
            if(obstacleGrid == null || obstacleGrid.length == 0 || obstacleGrid[0][0] == 1) return 0;
            int[][] dp = new int[obstacleGrid.length][obstacleGrid[0].length] ;
            for(int i = 0 ; i < obstacleGrid.length; i++){
                if(obstacleGrid[i][0] != 1)
                    dp[i][0] = 1;
                else
                   break;
            }
            
            for(int i = 0 ; i < obstacleGrid[0].length; i++){
                if(obstacleGrid[0][i] != 1)
                    dp[0][i] = 1;
                else
                   break;
            }
            
            for(int i = 1; i < obstacleGrid.length ; i++){
                for(int j = 1; j < obstacleGrid[0].length ; j++){
                    if(obstacleGrid[i][j] == 1)
                        dp[i][j] = 0;
                    if(obstacleGrid[i][j] == 0)
                       dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
            
            return dp[obstacleGrid.length-1][obstacleGrid[0].length -1];
        }
    }
  • 相关阅读:
    android 中管理短信
    Note: log switch off, only log_main and log_events will have logs!
    Android中内容观察者的使用---- ContentObserver类详解 (转)
    Mac下eclipse安装SVN插件
    手把手教你在Eclipse中使用CVS Branch功能
    DIV+CSS命名规范-转载2
    DIV+CSS命名规范-转载1
    仓库入仓-手机条码扫描
    速卖通承认的承运商代码
    同一个仓库,供应商和分销商的库存同时存在的问题
  • 原文地址:https://www.cnblogs.com/joannacode/p/6121156.html
Copyright © 2020-2023  润新知